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In this Letter, we describe the connection between the classical concepts of nonintegrability and chaos
and the quantum concept of dynamical symmetry breaking. The existence of unbroken dynamical sym-
metry implies integrability of the mean-field motion in a quantum phase space, defined as a symplectic
coherent-state parametrization of the coset space of the overall dynamical group. Broken dynamical
symmetry leads to nonintegrability, and thus chaotic solutions to Hamilton’s equations in the quantum
phase space. We illustrate the general ideas with results obtained for a model of two coupled spins.
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The study of the quantum manifestations of classical
chaos has attracted considerable interest in recent
years.! However, unlike the well-defined classical con-
cept, >3 there exists no generally accepted definition for
quantum chaos. In this Letter, we address this problem
by establishing a relation between the concepts of
dynamical symmetry and quantum integrability. This is
accomplished by introducing an unambiguous and gen-
eral definition of the phase space of quantum systems in
terms of the mean-field motion in the coherent-state rep-
resentation.

A classical mechanical system with /V degrees of free-
dom is integrable if a set of IV constants of the motion
with mutually vanishing Poisson brackets (i.e., in involu-
tion) can be found.?® An analogous situation occurs in
quantum mechanics if a complete set of N commuting
operators can be found which also commute with the
Hamiltonian of the system. This can be explicitly real-
ized for a quantum system having a dynamical group,
and a precise relation between integrability and dynami-
cal symmetry can be made.

A quantum system has a dynamical group G if the
Hamiltonian of the system is a function in the generators
of G. In this case, the corresponding Hilbert space can
be decomposed into a direct sum of the irreducible car-
rier spaces of G. Therefore, for such a system the discus-
sion of the physical properties can be restricted to one of
the irreducible carrier spaces (i.e., to a single irreducible
representation). Furthermore, the system has a dynami-
cal symmetry if the Hamiltonian is solely a function of
the Casimir operators of a particular group chain of
G.*> Explicitly, we have

H=f(C.), i=12,...,s, (1)

for a given a, where C} is the Casimir operator belonging

to the ith subgroup of the ath group chain of G:
GidGi™'o--- DG},
GD{GiD>G:™ 'o--- OGS, 2)

-1 1
GiDGs™'D -+ DG,

for G with y subgroup chains. This implies that the
Hamiltonian will be diagonal in an irreducible represen-
tation whose basis can be labeled by the complete set of
quantum numbers of a particular subgroup chain, and
that the energy eigenstates are thus just the basis vectors
of this irreducible representation. If the Hamiltonian
cannot be expressed solely as a function of the Casimir
operators of a single subgroup chain, we say that the
dynamical symmetry of the system is broken.

To connect the properties of quantum systems to man-
ifestly classical concepts such as integrability and chaos,
the quantum dynamics must be formulated, in a way
such that a classical-like limit exists. Almost all physical
properties of complex quantum systems are interpreted
in terms of the various mean-field theories. Thus, the
mean-field approximation is, of necessity, of fundamental
importance to our understanding of realistic quantum
systems. Therefore, in this Letter, we shall investigate
the mean-field motion of quantum systems with dynami-
cal groups to establish the connection between dynamical
symmetry breaking and nonintegrability.

An elegant way of formulating a mean-field theory is
in terms of the coherent-state path integral. Stationary
phase evaluation of the exact propagator in the
coherent-state representation leads to approximate equa-
tions of motion for the coherent-state parameters. This
space can be given a symplectic structure,® and the equa-
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tions are thus the Hamilton’s equations for the mean-
field motion. For coherent states of a general Lie group
G, this space is the coset space G/H, where H is a stabili-
ty subgroup of G. Thus, the coset space is the “quantum
phase space” for the mean-field motion. We have shown
that the dimension of a quantum phase space can be
uniquely defined from the dynamical group of the sys-
tem’: the dimension of the quantum phase space is al-
ways exactly twice the number of quantum numbers of a
particular canonical subgroup chain required to label a
basis state of a given irreducible representation of G. If
the usual classical limit of the system exists,® it can be
shown that the dimension of the quantum phase space is
identical to that of the classical phase space.’

Based on this definition of the quantum phase space,
an explicit connection between the dynamical symmetry
and the integrability can be made: Suppose that, for a
quantum system with dynamical group G, the dimension
of the complete set of quantum numbers necessary to
fully label its Hilbert space (an irreducible carrier space
of G) is M. The dimension of the corresponding quan-
tum phase space is then 2M. When the system possesses
dynamical symmetry, there are M good quantum num-
bers which correspond to M constants of motion of the
mean-field equations. The mean-field motion is therefore
integrable in the classical mechanical sense: Trajectories
are quasiperiodic on invariant M-tori in the quantum
phase space. No chaos can exist if the dynamical sym-
metry is intact.

If the dynamical symmetry of the system is broken,
some of the M good quantum numbers are lost. There
are then fewer constants of the motion (< M). In this
case, the mean-field dynamics is nonintegrable, and thus
regions of chaotic motion will in general be found.??
We call this chaotic motion semiclassical chaos, as it is
a quantum characteristic of the system provided that the
mean-field or semiclassical approximations are valid. In
the classical limit of the mean-field theory, it can be
shown that all the conclusions given above are identical
to those of classical mechanics.” This will guarantee
that our basic ideas and definitions are self-consistent.

In order to illustrate these general ideas, we consider
the simple example of two coupled spins.*'® The proper-

H(p,q)={p.q|H|p,q)

= - {Lpt+qg)+ 5 P3+qd) —(i+j D+ + aqig2(4ji—pt —q}) 24, —p3—g}) V2,

dgi/dt =9H (p,q)/dp;, dpi/dt=—08H(p,q)/dq;,

where i =1 and 2 for spin 1 and spin 2, respectively.

ties of this system have previously been studied in rela-
tion to the problem of quantum chaos. The model Ham-
iltonian is written as follows:

H=0—-a)lJ,+Jy1+a) T, (3)

where 0 <a =<1 is a coupling constant. The dynamical
group of (3) is SU'(2)®SU2(2) for spins 1 and 2.
There are two dynamical symmetry chains:

SO'(2)®S02%(2), (4a)
SU'*2(2)2S0'*2(2).  (4b)

The bases of Hilbert space which carries the irre-
ducible representation (j;j;) of SU'(2)®SU2(2) are
{l Gj)dmmy); m, =j1,...,=Jj1, ma=ja..., —jz}
and {| Gij2)jm); j=ji+jo.. . 1=, m=j,...,
—j} for dynamical symmetry chains (4a) and (4b), re-
spectively. The dynamical symmetries of H can be
classified as follows: (a) for @ =0, H has both dynamical
symmetry chains (4a) and (4b); (b) for a =1, the system
has dynamical symmetry (4a), with the SO(2) axis
redefined to be the x axis; and (c) for 0 <a <1, the
system’s dynamical symmetry is broken.

The mean-field motion of the coupled spin system can
be described by use of the coherent states of
SU'(2)®SU*(2),"

SU'(2)®SU2(2)D{

2
|p.q) =exp .§](C.-J,~+—§?‘J,~_)|(j,jz)—jl—j2> G))

Correspondingly, the symplectic coordinates of the co-
herent states are

272 (gi+ip) =(2j) (/| &i | Dsin | & |

=(2j;)2sin(% 6,)e 4,
where (6;,¢;) are spherical coordinates of the coset rep-
resentative of SU'(2)®SU2(2)/U'(1)®U?2(1) which is
isomorphic to S2®S2. Then the quantum phase space is
a four-dimensional compact space p’+gq’ =< 4j;, as the
number of quantum numbers (m2;m;) or (jm) for the
subgroup chains SO'(2)®S02(2) or SO'*2(2) of
SU'(2)®SU?(2) is 2. The mean-field dynamical equa-

tions in the symplectic phase space have the standard
canonical form®:

(6a)
(6b)

The character of the mean-field solutions can be investigated by numerical trajectory integration and visualized with
use of Poincaré surfaces of section.>*> (In all calculations, we set j; =j,=1 and E =0.01.)
For a =0, the motion is integrable since {9;;, H(p,q)} =0, where 9, ={p,q | Ju | p,q and

2
-3 |f0 _ 8gdf
ir.¢ ,'zl [ 9q:8p;  98qi9pi
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FIG. 1. Surfaces of section for mean-field motion of the
coupled spin system (3), in the symplectic coordinates
(g,p) =(q2,p2) with ji=j,=1, E=0.01. (a) a=0; (b)
a=0.8; (c) a=1.

is the Poisson bracket defined on the symplectic structure
of the quantum phase space. In the symplectic phase
space (p,q), the Hamiltonian is equivalent to two uncou-
pled harmonic oscillators. The surface of section is
shown in Fig. 1(a). This results because there are two
inequivalent dynamical symmetries in this limit. In the
other limit, a =1, the mean-field motion is again integr-
able, as ¥, (i =1,2) are constants of the motion. Figure
1(c) shows the surface of section of this limit. The
motion again lies on invariant curves on the surfaces of
section.

If 0<a<1, the system’s dynamical symmetries are
broken, Eq. (6a) corresponds to a coupled harmonic-
oscillator system. Because there are no constants of the
motion other than the energy E, the mean-field equations
are nonintegrable; this manifests itself in the quantum
phase space as chaotic trajectories. Figure 1(b) shows
this situation, with @ =0.8. The invariant tori appear to
be almost completely destroyed, and the chaotic motion
fills the entire surface of the section.

To summarize, for the simple example of a two cou-
pled spin system, we have seen that broken dynamical
symmetry leads to nonintegrability of the mean-field
motion. As is generic for classical nonintegrable sys-
tems, chaotic solutions to Hamilton’s ordinary dif-
ferential equations result from the nonintegrability. For
this system, the mean-field motion is identical to classical
mechanics (except for the replacement of integer or
half-integer j by the continuous j), and the chaotic
mean-field motion simply corresponds to chaos in the
corresponding classical system. The definition of quan-
tum phase space made here, however, is considerably
more general, encompassing systems with no classical
analog, such as the many-fermion system in which the
Pauli principle plays a very important role.'> A more
detailed and comprehensive discussion will be given in a
separate publication.’
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