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Regular and Chaotic Chemical Spatiotemporal Patterns
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The first experimental observation of a bifurcation sequence of patterns in a reaction-diffusion system

is reported. The experiment on a one-dimensional system, maintained away from equilibrium, reveals

steady, periodic, quasiperiodic, frequency-locked, period-doubled, and chaotic spatiotemporal states. Re-
sults from a model reaction-diffusion system agree qualitatively with the experiment and provide insight
into the physical mechanism that drives the observed behavior.

PACS numbers: 05.45.+b, 05.70.Ln, 82.20.Wt

Spatiotemporal patterns are a ubiquitous feature of
natural systems. Examples range from banded patterns
in rocks to excitation waves across the heart to the epi-
tome of pattern formation, embryogenesis. The mecha-
nisms of pattern formation are often chemical in origin.
In contrast to natural systems, laboratory experiments on
chemical spatial pattern formation were until recently
conducted in closed systems, ' not in open chemostats
such as those usually employed in the study of temporal
structures. Thus the observed patterns decays irreversi-

bly and uncontrollably as thermodynamic equilibrium
was approached. This problem can be overcome with the
use of open reactors that have an external feed of
reagents, so that spatiotemporal patterns can be sus-
tained indefinitely. Open reactors provide a second cru-
cial advantage: Feed rates and feed concentrations can
be used as control parameters to investigate bifurcation
sequences.

In this Letter we study a new type of spatially extend-
ed open chemical system, the Couette reactor. This is
an effectively one-dimensional reaction-diffusion system
with well-defined boundary conditions. Using a Bel-
ousov-Zhabotinskii reaction, we have observed the bi-
furcation sequence shown in Fig. 1(a) as the feed rate of
one of the species was varied. The essential features of
the experimental observations are captured by a simple
one-dimensional reaction-diffusion model with a skeletal
scheme for the Belousov-Zhabotinskii chemistry. Nu-
merical studies of the model yield a bifurcation sequence
leading to chaos that is in qualitative agreement with the
sequence observed in the experiment, as can be seen by
comparing Fig. 1(a) with 1(b).

We will first describe the experimental setup and the
numerical model and then discuss the results further.
The Couette reactor consists of two concentric cylinders
with the inner cylinder rotating and the outer cylinder at
rest (see Fig. 2). Reagents of the Belousov-Zhabotinskii
reaction are fed into the cylindrical annulus with the oxi-
dizer (bromate) at one end of the reactor and the reduc-
er (glucose) at the other end. The rate of removal of
chemicals at each end is carefully adjusted to match the
feed rate; thus there is no net axial fiow. Experiments
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FIG. l. (a) Bifurcation sequence obtained in the experi-
ment, where the control parameter is ao, the bromate feed rate.
(b) Bifurcation sequence for the model, where the control pa-
rameter is Ao, the bromate feed concentration. The observed
spatiotemporal patterns are steady (S), periodic (P), quasi-
periodic (QP), frequency locked, period doubled (PD), and
chaotic (C); some attractors corresponding to these states are
illustrated in Fig. 3. Frequency-locked states are labeled by the
frequency-locking ratio, except for a region labeled L in (b),
where there are many different frequency-locked states, and
the hatched vertical lines in (b), which are very narrow win-

dows of frequency-locked states.

indicate that the transport arising from the hydrodynam-
ic flow can be modeled as a one-dimensional diffusion
process in the axial direction; the effective axial diffusion
coefficient is about 0.08 cm /s at the 6-Hz cylinder rota-
tion rate used in the present experiment. In each run
the same hydrodynamic state is produced by use of a
slow, programmed acceleration of the inner cylinder
from rest to the final rotation rate.

We model the chemistry in the Couette reactor using
the two-variable Oregonator kinetics; the variables are
the concentrations u and v of the bromous acid and the
catalyst, respectively. The kinetic equations also in-

clude bromate (labeled A ) and the organic substrate (la-
beled 8), but A and 8 are held fixed in numerical studies
of well-stirred reactors since they do not vary much in

one oscillation of the reaction. For the Couette reactor
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this translates into the assumption that the spatial concentration profiles of A and 8 are determined solely by diffusion
and hence vary linearly with axial position. The final model equations in dimensionless form are

a, u=Da„u+(I/.) [u[A(z) —u]+q(z)B(z)v[pA(z) —u]/[pA(z)+u]], a, U=Da„.+A(z)u B—(z)v,

with no-flux boundary conditions at z =0 and z =1. The
effective diffusion coefficient D is the same for both u

and v. The stoichiometric factors c and p are constants,
and the factor q is assumed to have a linear spatial
profile. ' The experiment is modeled by feeding A at
z 0 and B at z=1 with A~=A(1) =An/6, Bo=B(0)
=B~/6, q(0) =1.5, and q(1) =0.9. We set D =3.75
X 10 (in dimensional form, D=0.078 cm /s for a
reactor of length 14.4 cm), s =2.2 x 10, p =3.5
X 10 ', and B~ =0.85. Our control parameter is Ao, the
feed concentration of the bromate at the z =0 end of the
reactor. '' The model equations were integrated numeri-
cally with use of second-order centered differencing on
an equally spaced grid of 100 spatial sites to approxi-
mate the spatial derivatives. ' The resulting set of ordi-
nary differential equations was time stepped with a
variable-step-size Gear-type integrator.

The dynamics of the spatiotemporal patterns observed
in the experiment and the model were identified by ex-
amining phase portraits such as those shown in Fig. 3 for
periodic, quasiperiodic, frequency-locked, and chaotic
states. ' A quasiperiodic state consists of two incom-
mensurate frequencies; in a frequency-locked state these
frequencies are locked at some rational ratio. Period
doubling of frequency-locked states to chaotic states was
observed in both the experiment and the model. In the
model several such period-doubling sequences have been
found (one is indicated in Fig. 1), while in the experi-

t
ment only one period-doubling sequence has been ob-
served thus far.

The chaotic spatiotemporal patterns observed in both
the experiment and the model are low dimensional. For
example, the experimental chaotic attractor in Fig. 3(d)
has a dimension of 2.1, and the Lyapunov spectrum'
computed for the model (which has 200 variables —2
species at each of the 100 sites) shows that the dimen-
sion for the entire reaction-diffusion system is never
greater than 2.4.

The frequencies of motion associated with a particular

CX0

FIG. 2. The concentric-cylinder Couette reactor was mount-

ed horizontally in a temperature-controlled bath (26.5
~0.5'C). The inner (outer) cylinder radius was 1.093 cm
(1.270 cm); the annulus length was 14.434 cm, which gave a
fluid-height-to-gap ratio of 81.5. The bifurcation sequence was

studied by varying the feed rate at z =0, ao, from 0 to 35 ml/h;

the feed contained 0.02M KBr03 and 1.0M H2SO4. The feed
rate at z =1, a~, was fixed (10 ml/h); that feed contained 0.1M
glucose, 0.06M acetone, 0.002M MnSO4, and 1.0M H2SO4.
The concentration of one of the intermediate species, bromide
ion, was measured with sixteen ion-selective electrodes (Ag-
AgBr) spaced equally along the axial extent of the reactor.

FIG. 3. (a)-(d) Attractors constructed from experimental
measurements at z =0.20 for a0=8.0, 9.0, 10.0, and 16.0 ml/h,

respectively (Ref. 13). (e)-(h) Attractors from the model at
z =0.25 for AD=0.020M, 0.025M, 0.050M, and 0.065M, re-
spectively. The attractors in (a) and (e) are limit cycles;
(b), (f) 2-tori; (c),(g) frequency-locked —', limit cycles; and

(d), (h) chaotic attractors. In (a) the amplitude is 10 times
smaller than in (b)-(d), and the spread of the limit cycle is
due to experimental noise. The temporal behavior is the same
at all spatial sites, although the amplitude varies with position,
as Fig. 4 illustrates.
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tiotemporal chaos, in a one-dimensional reaction-
diffusion system maintained away from equilibrium.
The bifurcation sequence of chemical spatiotemporal
patterns from steady to low-dimensional chaotic behavior
resembles that of a periodically forced nonlinear oscilla-
tor. A simple model of the chemistry, not intended to
account for the details of the experimental system, repro-
duces the qualitative features of the bifurcation sequence
leading to chaos in the Couette reactor" and provides an
understanding of the mechanism underlying the observed
phenomena.
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