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Argyrakis Replies: The information dimension D; for a
random walk on a lattice was defined! as the following:

Sy
DI=[—ZPk1ﬂPk /lnN, (1)

k=1
where N is the number of steps, Py is the probability of
visiting the kth site, and Sy is the number of distinct
sites visited at least once in a walk [Eq. (3) of Ref. 1].
This should be considered as a general definition provid-
ed that N— oo. From this equation and also from Eq.
(5) of Ref. 1 it is rather obvious that D;=D,/2 only
when all sites have exactly the same probability of visita-
tion (i.e., P, =1/Sx). While this is intuitively true for a
perfect, symmetric, and homogeneous lattice, it is not
obvious if this should also hold true for an impurity
doped, random, and inhomogeneous lattice, all properties
of a fractal structure.

To test this point, numerical calculations were per-
formed! for the 2D percolating clusters, and it was ini-
tially found that, indeed, D;#D;/2, for the time range
examined (10000 steps), as D;=0.62 vs D;/2=0.65.
Since the accompanying Comment? suggests otherwise,
more numerical calculations were performed on other
fractal systems, and their behavior as a function of time
was studied in detail.> The Sierpinski gasket (the fractal
prototype) was first tested and then the 3D perfect and
fractal lattices for walks up to 10° and 10° steps. Our
preliminary results for all systems checked showing that
for the range up to 10* steps our original calculations
were correct, i.e., the difference between D; and D;/2
persists (about 5%-10%, depending on the system).
However, the extended time calculations show that this
difference starts to diminish, and one can clearly see that
as t— o indeed D; and D,/2 coincide. For example, for
the Sierpinski gasket, where D;/2=0.685, we find that
D;(N =1000) =0.659, but D;(N =30000) =0.667, and
D;(N=100000) =0.677. Thus what we calculate here
is an effective exponent D;(N) which depends on time
and not its theoretically limiting value.

In the present Comment, de Arcangelis, Coniglio, and
Paladin argue that the Pj function is always asymptoti-
cally homogeneous, even in the fractal lattice, and also
that the P, function is not an example of a multifractal
property that could possibly be amenable to independent
exponents. The authors are basing this claim on the ob-
vious identity*

InXy Py
qg—1
which has meaning only at the limit of infinite time.

—D;InN =2 PcInPy = 1im1 , 2)
g—

With this restriction the above data are thus in agree-
ment with the main idea that this Comment offers. The
implications of my work are that for most other trans-
port properties examined up to now, such as Sy, R#,
etc., finite, short times suffice to bring out the fractal be-
havior, while for the P, function tested here this is not
true. For example, in past work the R# exponent was
derived® from calculations of N =400 steps, and the Sy
exponent from N =1000 steps.® This is important for
experimental measurements of fractal and critical ex-
ponents based on excited-state kinetics.” These experi-
ments describe the low-temperature transport range on a
molecular alloy or a chemical reaction mechanism on a
surface, and certainly the excited state of the measure-
ment has a well-known limited lifetime (restricted num-
ber of steps). Thus it is of the utmost importance to
clearly define the regions of validity of these exponents.
Precisely for this reason I introduced the X;PxInP;
function, since it is well known®? that this function con-
stitutes a probability measured in the most general sense.

Concluding, our earlier,! and most recent work,> do
indeed show that D;=D,/2 for fractals only in the limit
of very long times, unlike other well-known related ex-
ponents.®® This point has practical implications in the
interpretation of related experimental results.’

I would like to thank Dr. G. L. Bleris for helpful com-
ments on the character of these exponents.
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