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We show that a one-dimensional tight-binding electron moving in a slowly varying potential,
V.=Acos(an"), where n is the site index and 0 < v < 1, has a mobility edge in its spectrum provided that
2) is smaller than the total unperturbed bandwidth of the system. We study the nature of the localized
and extended eigenstates of this system as a function of A and v.

PACS numbers: 71.50.+t, 03.65.Ge, 71.30.+h, 71.55.Jv

The motion of an electron in a one-dimensional lattice
as described by the nearest-neighbor tight-binding equa-
tion

un+l+un—l+Vnun=Eun (l)

is a paradigm in condensed-matter physics. In Eq. (1),
uy is the amplitude of the wave function at the nth site,
V, is the on-site diagonal potential, and E is the energy.
For periodic ¥, Bloch’s theorem gives extended band
states. Specifically for V, =0, Eq. (1) is trivially solved
with u,=u¢e™, giving rise to the one-dimensional
tight-binding energy band E=2cosf with 0<6=<n.
For random V,, Eq. (1) is the Anderson model' with lo-
calized states as the only allowed solutions. It is well
known? that in one-dimensional systems with any diago-
nal randomness all states are localized and there is no
mobility edge separating localized and extended states.
There is a class of pseudorandom and incommensurate
potentials lying in between the random Anderson model
and the periodic Bloch model which have attracted a lot
of recent attention.>'® A very simple model to study
such potentials is given by’

V, =Acos(zan’), 2)

where A, a, and v are positive numbers which completely
define the tight-binding problem. For a rational and v
an integer, we get back the periodic Bloch model,
whereas it has been shown’ that for a irrational and
v= 2, the pseudorandom tight-binding model defined by
Egs. (1) and (2) becomes equivalent to a corresponding
random Anderson model with all the states localized and
the localization length equal to that of the corresponding
random model. For v=1 and « irrational, Egs. (1) and
(2) define Harper’s equation with an incommensurate
potential which has been studied extensively in the last
few years.>* For this situation (v=1, a irrational) the
model has either all extended or all localized states de-
pending on whether A is smaller or larger than 2, the
A =2 case being the self-dual point discovered by Au-
bry>* where all the states are critical.

We have studied the model defined by Egs. (1) and
(2) for arbitrary values of v in the range 0 < v <2 and
for arbitrary irrational a. In particular, we find that for

0<v<1 there exists a mobility edge in this one-
dimensional problem provided that A <2. Thus for
0<v<1 (and for A <2) we find extended states in the
middle of the band (| E| <2 —2) and localized states at
the band edge (2+1> |E | >2—2), with the mobility
edge at E.= =% (2—21). For A > 2 all states are found to
be localized. For v>1 our results are consistent with
Thouless’s recent finding® that all states away from the
exact band center are localized even though the localiza-
tion length could be very large at the band center; in par-
ticular, Thouless showed that the Lyapunov exponent ap-
proaches zero extremely slowly at the band center, £ =0.
We differ with the recent perturbative conclusion’ of
Griniasty and Fishman (for v < 1) who studied only the
band-center states, found them to be extended, and con-
cluded that all states are extended for v<1 at least
within the perturbation theory. As we show in this pa-
per, for v<1 there are localized states near the band
edge, separated from the extended states near the band
center (E =0) by a mobility edge. We emphasize that
our conclusions, in contrast to the results obtained in
Ref. 7, are based on exact numerical calculations on
small systems and not perturbation theory (we also pro-
vide a semiclassical theoretical argument in support of
our numerical results).

Our discovery of a mobility edge in this one-
dimensional problem is quite interesting because the pop-
ular wisdom has been that one-dimensional models, par-
ticularly in the gapless spectrum of a one-dimensional
Schrodinger operator, do not allow for the existence of a
mobility edge.? It is all the more surprising that a mo-
bility edge exists (for v<1 and A <2) in a model as
simple as the one defined by Eqgs. (1) and (2). In this
Letter we will report our results for the mobility edge in
the 0 <v <1 regime. Details of the localization phase
diagram with results for other values of v will be given in
a forthcoming longer publication. Our numerical results
have been obtained by direct diagonalization of the
tight-binding Hamiltonian up to a system size of 20000
sites. In addition, we have verified a number of our re-
sults by calculating the localization length using the re-
cursive transfer matrix technique for systems of up to
108 sites. We believe that our numerical evidence in
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FIG. 1. (a),(b) The “inverse localization length” y defined . *l( o \ / \ /
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energy E =E, for the cosine model (V =total number of sites). 04 [ \ Vi N
Inset of (a): y for the square-well model. (c) The correlation L
length £ defined in the text as a function of E for the cosine -06b—1 I S R T S S
model. O 200 400 600 800 1000
n
. " . FIG. 2. Some typical (a) extended and (b)-(d) localized
suppor} Of the.ex1stence O_f a mobility edge for this model eigenstates for the cosine potential, which itself is shown as the
potential is quite compelling. dashed line.

In Figs. 1(a) and 1(b) we show our calculated inverse
localization length y as a function of the electron energy
E for na=0.2, v=0.7, and A =0.4 and 2.0, respectively. The mobility edges for the two cases are clearly at E. =+ 1.6
and 0, respectively. For all values of 0 <A <2 we find the mobility edge to be located at | E.| =2 —2, whereas for
A > 2 we find all states to be localized. The dependence of y on E for other values of a, v, and A is very similar to that
shown in Fig. 1(a). In Fig. 1(c) we show the localization correlation length & which is defined as
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S0 lu(x —x0) | *=P, where xo is the center
(the peak) of the wave function and P is a preassigned
number very close to unity. We choose P=0.99 for this
figure (we have varied P systematically between 0.95 and
0.99 to check our results). For extended states, & will
span the whole system whereas for localized states & will
typically be the size of the localization length. We see
the existence of a mobility edge around E, =2 —A in the
&-E plot. This is again a typical result for £(E) as long
asAi<22and v<1.

In Figs. 2(a)-2(d) we show some typical localized and
extended eigenstates for the model. As one would ex-
pect, a state just above E. is less localized than a state
near the band edge (2+1). The extended state at an en-
ergy E < E_ is clearly extended over the whole system.

We can understand the behavior shown in Figs. 1 and
2 on the basis of the following simple argument. We em-
phasize that our arguments are of rather heuristic na-
ture. For large n, V, defined by (2) is very slowly vary-
ing and can be regarded as a constant locally. Then the
tight-binding Eq. (1) becomes wup++u,—=(E
— V) u,=Cpu,, where C,=C is locally a constant.
The condition for a complex solution (i.e., locally extend-
ed) to this equation is that |C,| <2, whereas for
| C, | > 2 the local solution is real (exponentially decay-
ing or growing). Since |V,|™>=A, it follows that
|E| >2—x or <2—Ax produces, respectively, a locally
(exponentially) localized or extended (i.e., a trigono-
metric solution) eigenstate. These locally extended or lo-
calized states are, in fact, globally localized (as is clearly
seen in our numerical work) because of the incommensu-
rate nature of the potential. Alternatively, if we con-
struct the continuum version of the equation defined by
(1) and (2), it is easy to see that for large n states with
| E| <2—A are all extended and with |E| >2—2A are
all localized. We believe that the states for |E| >2—2
remain localized globally because the incommensurate
nature of the very slowly varying potential defined by Eq.
(2) ensures that no energy degeneracy exists in the
problem—in fact, the wave-function overlap decays ex-
ponentially whereas the energy spacings between neigh-
boring wells decrease algebraically ruling out the possi-
bility of any resonance. It is easy to show that the
wave-function overlap between neighboring localized
states goes down as exp(— yN'~") (where N is the total
number of sites) whereas the energy spacings decrease as
a power law of V. Thus, locally localized states remain
globally localized in the large-NV limit. We, therefore,
conclude that there is a mobility edge at |E|=E.
=2 —A, consistent with our numerical results. Note that
our argument applies only for v <1 (so that for large n,
the potential is locally a constant). From the same argu-
ment it also follows that for A > 2 all states are localized
for this system. We also note that there are no eigen-
states for the model with | E| > 2+A. We have numeri-
cally calculated the localization exponent S defined by
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FIG. 3. (a) The density of states (DOS) for the cosine mod-
el. Inset: The average DOS which is obtained by averaging
over the nonrelevant parameter a. A logarithmic divergence is
observed at E=FE.. (b) The DOS for the square-well model.
In the inset, we show the average DOS (by averaging over g).
A square-root divergence at the mobility edge is found in this
case. (c) The ratio of the number of extended states to the
number of localized states as a function of A in the cosine mod-
el. A square-root divergence is found at A =0.

y~ | E —E_.|® and our numerical value of g for Fig. 1 is
1.0x0.1.

To check the above analytic ideas we calculate the lo-
calization exponent for a system where the potential bar-
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riers are square-well-like. We choose a model potential
which is piecewise constant (locally square-well-like) and
with a constant depth 2A, but with variable well widths
L, defined by L,=q"Ly, where Lo=10, g=1.1. The
variable well width ensures that no exact energy degen-
eracy exists and, clearly, the same considerations as
above apply to this model as well except that the as-
sumption of locally constant potential is a better approxi-
mation for this model even for small n. For this model,
the above simple considerations show that = 3. In the
inset of Fig. 1(a) we show our calculated inverse locali-
zation length y for this model and our numerically calcu-
lated value of the localization exponent is $=0.5 %+ 0.05
in agreement with the theoretical consideration. The
eigenstates for this square-well model look very similar
to those shown in Fig. 2 with the mobility edge at
E.=2—A.

In Fig. 3 we show our calculated density of states for
the cosine and the square-well potentials, respectively.
As insets we also show the average density of states for
the two cases. Finally, in Fig. 3(c) we show, as a func-
tion of A, the ratio of the number of extended to localized
states— we have verified that this result is independent of
the system size. Clearly, a mobility edge exists for
0 <A <2. It is interesting to point out that the average
density of states seems to have a singularity at £ =FE_ in
this model (unlike the random Anderson model where
the density of states is thought to be smooth through
E.). Our numerical results indicate that the average
density of states diverges at E. as (E—E.) ™' or
In|E—E.| for the square-well-like and the cosine po-
tentials, respectively.

Before concluding, we point out that the model poten-
tial defined by Eq. (2) (or, its square-well counterpart) is
inhomogeneous in space which makes it different from
most other localization problems studied in the litera-
ture. A rigorous understanding of the localization length
and of the structure of the mobility edge in the thermo-
dynamic limit for such an inhomogeneous problem re-
quires subtle mathematical considerations which are
lacking at the present time. What we hope to have es-
tablished in this paper is that the model defined by Egs.
(1) and (2) is a class of one-dimensional problems which
allow for the existence of a mobility edge. We find this
interesting and hope that this paper will motivate further

work on this model, particularly along the line of obtain-
ing rigorous results.

We conclude by pointing out that it is, in fact, feasible
to construct a finite experimental system very closely
corresponding to the model of Egs. (1) and (2)—this
would be the plasmon spectrum in artifically constructed
semiconductor superlattices'® where suitable doping can
mimic the potential of Eq. (2). In the plasmon prob-
lem, '® the hopping is of longer range; however, we have
explicitly verified that adding a next-nearest-neighbor
hopping term to Eq. (1) does not change our results.
Thus, the mobility edge predicted in this paper should be
observable via Raman scattering experiments in suitably
constructed semiconductor superlattices. We will report
details of our numerical work in a longer publication.
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