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Localization by a Potential with Slowly Varying Period
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In order to understand some discrepancies in the recent Letter of Griniasty and Fishman, a study has
been made of localization by a one-dimensional potential with slowly varying period. Away from the
band center, localization is produced by local regions in which the Bragg condition allows backward
scattering, and the result agrees with that obtained from perturbation theory. The localization length in-

creases as the band center is approached in a manner that cannot be obtained directly from perturbation
theory. It is shown that rounding errors set an upper bound to the localization length that would be
determined from numerical studies of such a problem.

PACS numbers: 71.50.+t, 03.65.Nk, 71.55.Jv

In a recent paper, Griniasty and Fishman
' have stud-

ied the problem of localization on a one-dimensional lat-
tice with a weak sinusoidal potential whose phase varies
as an', where n labels the site on the lattice. For v~ 1,
the eigenstates were found to be extended, and for v ~ 2

they were localized with a localization length equal to
that for a random potential of the same mean square
strength. In the case 1 & v ( 2 there was some
discrepancy between the analytical results obtained by
use of the perturbative theory of Thouless and the nu-

merical results obtained by a direct solution of the recur-
sion relations. In order to find out the reasons for this
discrepancy I have studied the problem of the discrete
Schrodinger equation with a sinusoidal potential whose

period varies slowly in space using different methods.
Away from the band center similar results were ob-
tained, but quite different results were found near the
band center. An analogous discrepancy in results for the
localization length of a random system near the band
center was found some years ago by Kappus and
Wegner.

Bragg reflection for a slowly varying period I study. —
the equation
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where I E I
(2, V is small, and p" (n) is small for large

n. The problem studied by Griniasty and Fishman' is of
this form for v&2. Locally the potential is like a
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For k ~ close to 2k 2, this gives

V2X(n)'=, —(k2 ——,
' kt)',
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provided that the right-hand side of this equation is posi-
tive. There is a similar formula for k t close to
2(n-k, ).

The integrated growth of the wave through a resonant
region is the exponential of

periodic potential of the form 2Vcos(k ~n+ ri), where

k ~
=p'(n)(mod2tr) .

The WKB approximation can be used to represent the
effects of the potential with slowly varying period. In
general, this gives an unimportant modulation of the
wave function, but there are resonant regions where

Bragg reflection occurs, and there the treatment has to
be more careful. In these resonant regions the wave

numbers of the running waves, which from the Floquet
theorem are known to exist for this periodic potential,
are complex, and the periodic potential couples solutions
of the form exp(~ —,

' ikon+En) Degen. erate perturba-
tion theory then gives the energy E =2cosk2 as an eigen-
value of the matrix

2 V
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There are two resonant regions for each change of kl or
p'(n) by 2tt, so that the total growth of the wave func-
tion when k 1 changes by 2n is

xV
exp

2 sin I 2 I dk t/dn I

These regions of growth related to strong Bragg scatter-

V2

4sin2k2
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ing are separated by regions in which there is no ex-
ponential growth, and so the average rate of growth per
site is equal to
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which is the result obtained by Griniasty and Fishman,
and is the same growth rate which would be obtained for
a random potential of the same strength. There is in fact
a correspondence term by term with the summation of
the perturbation-theory result for the localization length

by the method of stationary phase in their Eq. (8); each
point at which the phase is stationary corresponds to a
region of Bragg scattering between degenerate Bloch
waves.

Behauior near the band center. —The arguments
presented in the previous section cannot be readily ap-
plied in the neighborhood of the band center, since
lowest-order Bragg scattering does not then simply con-
nect a pair of nearly degenerate states. When k| is close
to z, changes in the wave number by either k 1 or 2x —k ~

connect nearly degenerate states, so that a long sequence
of states must be considered. In fact, the band structure
of the periodic or quasiperiodic system is quite different
when kl is close to z. Instead of having a pair of well-

defined energy gaps each of width 2V, as is given by Eq.
(3), there is a gap around zero of width 4V which is

penetrated by a number of narrow energy bands [see Eq.
(11)below].

The quasiperiodic case, with k|/2x irrational, can be
studied as a limit of the periodic case k 1/2m =q/p ration-
al. There is a recent review of the quasiperiodic case by
Sokoloff. For the purposes of our discussion the most
important results for the quasiperiodic case were those
obtained by Aubry and Andre using the duality trans-
formation that transforms Eq. (1) for p(n) =k ~

n+ g
into an equation of the same structure for the amplitudes
of the Bloch waves. From this it was deduced that the
Lyapunov exponent X is zero in the spectrum for V ( 1;
the exponent is of course positive in the gaps outside the
spectrum.

It is clear that E =0 cannot lie in a finite band gap for
any value of k~. For ki/2z=q/p with p odd, symmetry
about E =0 shows that one of the p energy bands must
be centered on E =0; it can also be shown that for p even
there are two bands touching there. Since any irrational
k| can be approximated arbitrary closely by a rational,
there must be points in the spectrum arbitrarily close to
E =0, and the exponent must be zero.

It is also known that the total measure of the spec-

f'= Vcos(xx+ ri)f Eg/2, —

g' = —Vcos(«x+ ri)g+ Ef/2 .
(9)

In this continuum approximation the value of g is ir-
relevant, and so it is set equal to —z/2 for convenience.
The function g can be eliminated from Eq. (9) to get

f"+ V'si—n'(«x) f—Vx.cos(«x)f=E'f/4. (io)

This is a Schrodinger equation, and in the neighborhood
of the minima of the potentials it is like a harmonic os-
cillator with energy levels

E2=8nVx.

These indeed give the centers of the bands observed for
the periodic system, and their widths should be calcul-
able by the calculation of the tunneling rate between the
potential minima for Eq. (10).

For E 0 the solutions of Eq. (9) are

f(x ) =A exp [ —(V/«) cos («x )],
g(x) =Bexp[(V/«)cos(«x)] .

(i2)

For nonzero E the equations can be expanded in powers
of E, which gives

trum is
t
4(1 —V) t, so that the sum of the total widths

of the gaps is equal to 4V plus the increase in distance
between the extremal band edges. The increase in dis-
tance between the band edges can be calculated by per-
turbation theory easily when k] is close to n, and it is ap-
proximately V; so we know that the sum of the gap
widths is still of order 4V.

Two methods were used to study the band structure
for x =z —kl close to zero. Direct numerical studies
were made for periodic systems, with values of «of the
form z/p, and then most of the systematic results were
derived by analytical arguments. If the substitution
b„=J2cos[(2n —1)z/4]a„ is made in Eqs. (1) and (2),
the equation

b„~~+[(—1)"E—2Vcos(«n+q)]b„—b„~ =0 (8)

is obtained. A further substitution b„=f(n)
+(—1)"g(n), where f and g are slowly varying, gives
the differential equations

f(z/«)
g(x/«)

i ——,
' [(E~/«)l, (2V/«)] '

(Ear/«) Ip(2 V/«)
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1
—

—, [(Err/«) lo(2V/«) ]

where Io is a modified Bessel function. This transfer rna-

trix gives the limits of the energy band centered at E =0
as

Eg = ~ 2«/xlo(2V/«), (14)
h, nE 2V

X =—cosh Io
R' 2 K' K'

(is)

which agrees with the results which I obtained numeri-
cally. Outside this central energy band it gives rise to a When this is averaged over v in the range 0 & x ( z for

2142



VOLUME 61, NUMBER 18 PHYSICAL REVIEW LETTERS 31 OCTOBER 1988

small E it gives

2V
zc ln[(4V/E)( /V ) 'ii)

where x'z is the value of x that solves Eq. (14) for
Eg =E.

The Lyapunov exponent is therefore zero for the in-
commensurate periodic potential at E =0, and there are
a number of other regions where it is zero in a neighbor-
hood of width 4V of this point. One cannot expect per-
turbation theory to work well for the Lyapunov exponent
in such a region, since perturbation theory will not give
the rapid variations which are associated with the van-
ishing values in the energy bands. Equation (16) shows
that the average Lyapunov exponent is reduced in this

region by a factor of order ln(V/E).
Egect of rate of variation ofperiod. —In the previous

section it was assumed that the wave number of the po-
tential variations was so slow that the Lyapunov ex-
ponent could be calculated by taking the potential to be
periodic and averaging over the wave number kl. There
is, however, some dependence of the exponent on the rate
of variation p" when E is close to zero. For a potential
of the form 2Vcos( 2 an ), where a and E are small, the
main contributions to the Lyapunov exponent will come
from regions where an is close to an odd multiple of x.
In such a region, Eqs. (9) and (10) can be adapted with
small modifications. At E =0 the analogy to Eq. (9) is

f'= ~ Vcos( —,
' ax +g),

whose solution is

f=exp[~ V(n/a) 'i [C((a/z) 'i x)cosg —S((a/z) 'i x)sing]],

where C and 5 are Fresnel integrals. Since C and S
change by unity through the origin, the function f in-
creases by a factor

exp [V(n/a ) 'i
~
cosg —sing

~ ] (i9)

each time an passes through an odd multiple of z. When
this expression is averaged over q it leads to an average
exponent per site

V 2a
Tf

(20)

provided that each individual factor (19) is much larger
than unity; this is equivalent to the condition that Eq.
(20) should be less than V /4.

Discussion. —The method used in the first section
should be accurate for small values of V except for the
region ) E ~

( 2V, and so the perturbative result obtained
by Griniasty and Fishman' should be correct except for
this region, and their numerical results seem to confirm
this. In this region close to the band center the exponent
should be reduced by the logarithmic factor given in Eq.
(16). At the band center the rate of variation of the
period is the most important factor, and Eq. (20) can be
used to study the effect of this. For curve b of Fig. 1 in
Ref. 1, I find that this equation predicts 0.32 for y/y
where 1V =10, and 0.16 where W =10 . These numbers
are quite close to the plotted values.

Even when the rate of variation of the period is vanish-

ingly slow a numerical calculation at zero energy would
give a finite value of the Lyapunov exponent, because
rounding errors would accumulate in certain regions,
where the width of the energy bands given in Eq. (14) is
comparable with the rounding error, or, equivalently,
where the excursions in the values of f or g given by Eq.
(12) are of this magnitude. For rounding errors of 2
(for IBM double precision) this would give a calculated
average Lyapunov exponent of order V /261n2x, which

is considerably lower than any value reported in Ref. 1

for v& 1.
A closely analogous situation exists for random sys-

tems. It was shown by Kappus and Wegner that the lo-

calization length in the band center is 9% longer than is

given by the perturbative argument used by Griniasty
and Fishman. ' It was subsequently shown by Derrida
and Gardner that there are similar anomalies in higher
orders of perturbation theory at all rational points in the
band. In a recent paper Bovier and Klein have shown

that formal perturbation series exist at both rational and
irrational points in the spectra, but the series differ in

their higher-order terms. It seems likely that the same
situation exists for the slowly varying potential studied in

this paper.
I am very grateful to Professor S. Fishman for

numerous and detailed communications about this work.
I am grateful for some useful discussions with Professor
M. Azbel, and for helpful comments on the manuscript
by Professor R. Haydock. I also wish to thank Dr. A.
Klein and Dr. P. Le Doussal for pointing out the
relevance of the work of Kappus and Wegner to me.
This work was supported in part by the National Science
Foundation under Grant No. DMR-86-13598.

'S. Griniasty and S. Fishman, Phys. Rev. Lett. 60, 1334
(1988).

2D. J. Thouless, J. Phys. C 6, L49 (1973).
iM. Kappus and F. Wegner, Z. Phys. B 45, 15 (1981).
4J. B. Sokoloff, Phys. Rep. 126, 189 (1985).
~S. Aubry and G. Andre, in Group Theoretical Methods in

Physics, edited by L. Horwitz and Y. Ne'eman, Annals of the
Israel Physical Society Vol. 3 (American Institute of Physics,
New York, 1980), p. 133.

6D. J. Thouless, Phys. Rev. B 28, 4272 (1983).
7B. Derrida and E. Gardner, J. Phys. (Paris) 45, 1283

(1984).
sA. Bovier and A. Klein,

p
Jt. Stat. Phys. (to be published).

2143


