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Ordering and Criticality in Spin-1 Chains
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The T=O behavior of the antiferromagnetic, nearest-neighbor, spin-1 chain is studied in a space of in-

teractions which includes exchange anisotropy, bond alternation, and biquadratic exchange. We find

that bond alternation can stabilize Neel order; that with sufficient biquadratic coupling the ground state
may be spontaneously dimerized and simultaneously critical; and that there is a line of multicritical
points where the Neel-ordered phase touches the manifold of isotropic coupling. Predictions of AfBeck
and Haldane regarding the criticality and ordering in these models are tested.

PACS numbers: 75.10.3m, 05.30.—d, 64.60.Fr, 75.40.Cx

1, even i,

while exchange anisotropy is controlled by a parameter 6
via

(A, B) =A'B'+ h(A "B"+A~By), (3)

has been the subject of several striking but largely un-

tested predictions. AfHeck' has suggested that any criti-
cal point of this model with h=l should lie in the
universality class of the k =2 Wess-Zumino-Witten
model, implying definite values for the critical exponents.
The prediction for the exponent ri has been verified for
the Bethe-Ansatz-solvable model X =P =5 =1; none of
the other exponents have been otherwise studied. No
other concrete examples of such critical points have been
examined, although Affleck predicted that one should
exist at A, = —,', P =0, 6=1 (note, however, that the k
value should be exact only in the large-S limit). Later
work by Afileck and Haldane has cast doubt on the as-
sumption of universality in the 6 =1 manifold, but the
situation is not at all clear.

Two types of spontaneous ordering have been the sub-
ject of much interest in these systems. The first is anti-
ferromagnetic (AFM) ordering, which occurs for
A (h, (p, k) ( 1. Haldane conjectured that, for isotro-
pic exchange and no bond alternation, the AFM order
should disappear at 6, & 1, and that the simple spin
chain (P =0, k =5 =1) should have a unique, disordered
ground state and is an unexceptional point in a disor-
dered phase which we denote the Haldane phase. The
transition at h,, was argued to lie in the universality class
of the 2D classical Ising model. Finite-size studies have
lent weight to these predictions, but the numerically es-

The T=O behavior of the antiferromagnetic, nearest-
neighbor, spin-1 chain with the bilinear-biquadratic
Hamiltonian

e =g,.(l) [(S;,S, +,).—P(S„S,+, ).'),
where bond alternation is controlled by X via

timated critical exponents at 6, are only in marginal
agreement with Haldane's prediction.

The second type of ordering is spontaneous dimeriza-
tion Maju. mdar and Ghosh found an exactly solvable
spin- 2 chain, which included next-neighbor interactions,
and which had a spontaneously dimerized ground state.
More recently, A1IIeck et al. suggested, on the basis of a
comparison between several simple trial states, that the
ground state of the nearest-neighbor spin-1 model (1),
for X =6=1 and P ) 1, may also be spontaneously
dimerized.

We address these issues, and others, by means of
high-order series expansions. Two classes of expansions
have been generated, namely (i) "ordered-state" expan-
sions in the variable 6 about 6=0 (Ising models), at
fixed P and k, and (ii) "disordered-state" expansions in

the variable k about k =0 (dimerized models), at fixed P
and h. The method by which the series were derived will

be described elsewhere; ratio techniques and diA'erential

approximants have been applied to analyze the resulting
series. ' Ordered-state expansions were carried out to
up to order 5' for the ground-state energy per spin Eg,
the sublattice magnetization M=N 'g;( —I)'(S;), and
the zz AFM equal-time structure factor po'
=g, [(—1)'(Sos;) —M J. (Angular brackets denote
ground-state expectation values. ) Disordered-state ex-
pansions were calculated to up to order k for the aniso-
tropic AFM equal-time structure factor and its second
moment

p,' =g, ( —1)'((s,,s, ),),
pp~=g;( —1)'i '((SO,S;),),

(4)

(5)

and the zz AFM susceptibility g" (defined via the
second derivative of Eg with respect to a staggered field

applied along the z axis). The ratio p2/po defines g, the
square of the ground-state AFM correlation length. For
h, =1, we also calculated Eg to order X" and the "dimer-
ization" D=N 'g;( —1)' (S; S;+t) to order k' . Be-
cause of space limitations, we omit here all the series and
details of their analyses: These will be presented else-
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Consider first the Hamiltonian (1) with pure bilinear

coupling (P=0). The T=O phase diagram in the k, A

plane suggested by our calculations is given in Fig. 1. As
one increases d from 0 along trajectory a, that is, in the
absence of bond alternation, AFM order is destroyed at
point A before the coupling becomes isotropic. The es-
timated position of this critical point is h, (k=1,P=O)
=0.841+0.002, which is consistent with earlier esti-
mates based on the diagonalization of finite chains. The
criticality at this point does, indeed, appear to be in the
universality class of the classical 2D Ising model. We es-
timate that M vanishes with an exponent P =0.13 ~ 0.02
(c.f. the 2D Ising value of —,

' ) and find that po' diverges
with an exponent y, =0.73~0.05 [c.f. the 2D Ising
values g= 4 and v=1, and the scaling relation" y,
=(1 —ri) vl.

It now applies some bond alternation and follows, say,
trajectory b, the series quite unexpectedly shows that the
stability of the Ising phase is enhanced, until A, reaches a
value k~ =0.60+ 0.04 at which h,, becomes 1. As X is
further decreased towards zero, A, (X,P 0) also falls to
zero. The ordered-state series estimates of the critical
exponents are consistent with classical 2D Ising criticali-
ty all along the line AMB, except possibly in the vicinity
of the novel multicritical point M. Near this point, the
M series is extremely ill behaved, and the po' series indi-
cates y, =0.95 + 0.20, where the large uncertainty
reAects our imprecise knowledge of k~.

The disordered-state expansions along trajectories
such as c, d, and e also prove revealing. For 0 (6 ( 1,
the estimated critical points A., (d„P=0) are consistent
with the estimates from the ordered-state expansions.
The series for g", po, and p2 all indicate divergences, as
one expects since the transition is to an antiferromagnet-
ically ordered state. Unfortunately, the series are too
short to allow for reliable estimates of the exponents; if
the critical X values are biased to those indicated by the
ordered-state expansions, then the resulting exponents
are consistent with 2D Ising criticality within large un-

certainties.
For 1 & 5, (~, the g" series becomes increasingly ill

behaved as 5 increases, while the series for po and pz
remain well behaved. We take this as evidence that the
incipient ordering along the critical line MC is XY-like.
One might expect that there is a region of algebraic XY
order, but the location of the presumed Haldane XY
boundary EM is inaccessible to the present calculations.

The disordered-state expansions at 5 =1 (trajectory d)
directly probe the multicritical point M, where all four
phases displayed in Fig. 1 meet. The quantities po, p2,
and g" all diverge at M—where there is algebraic Neel
order, even though the phases on both sides of the transi-
tion are disordered. Again, because XM is not precisely
known, all exponent estimates suffer large uncertainties.
For po, p2, and g", the critical indices are, respectively,

y, =0.2 ~ 0.3, y, +2v 2.0 ~ 0.4, and y =1.1 ~ 0.4.
Furthermore, we have calculated the crossover exponent

p at M by numerically differentiating the series with
respect to d, ; we estimate' p =1.1 ~ 0.3.

Let us now examine what happens when a biquadratic
term (PAO) is added to the interaction (see Fig. 2); we
discuss only the disordered-state expansions for the iso-
tropic case (6 =1). As P falls below zero, k, (P), which
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FIG. 1. Phase diagram in the X,h plane for P =0; typical un-

certainties in the phase boundaries are indicated by error bars.
Note the broken horizontal scale. The point 0 indicates the
simple isotropic spin chain. The point M is a novel multicriti-
cal point where all four phases meet and the Ising phase
touches the manifold of isotropic coupling (A=1); along tra-
jectory d, M separates two disordered phases. The phase dia-
gram is trivially symmetric under the replacement X
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FIG. 2. Phase diagram in the k, P plane for A=1. Along
QR, the system is both spontaneously dimerized and critical.
For p ~ —

—, , our method of calculation cannot be implement-
ed.
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gives the position of the multicritical point analogous to
M for each slice through the phase diagram at constant

P, moves to A. =0 as P approaches —
3 . At P = —

3 the
singlet and triplet states of the dimers cross, so for all
A, =0, h =1, and P ( ——,

' the ground state is exponen-
tially degenerate and expansions cannot be performed by
our methods.

As P increases from zero, A,, (P) also rises. Although
the critical-point estimates are not precise, the smooth-
ness of the extrapolations as functions of P strongly sug-
gests that there is a line of multicritical points, of which
M is an unexceptional member, coming out of the
Bethe-Ansatz-solvable multicritical point R. Unfor-
tunately, our estimates of the critical exponents along
this line are not sufficiently precise to determine whether
this line of multicritical points is in the same universality
class as R, although they are consistent with the possibil-
ity.

At p=1 (trajectory f), we can use to our advantage
the knowledge that 1, 1 to obtain reliable estimates
for critical exponents for all of the quantities studied. '

We find that the critical indices are y, 1=0.15~0.15,
y, +2v =1.56+ 0.05, and y =0.9+ 0.1. In addi-
tion, we define exponents for the energy and diinerization
via Ez —Eg~ ~- (1 —X) '~ ~ (plus possible analytic

ilhlR)
terms on the left-hand side) and D-(1 —X);we es-
timate 2 —a =1.37 ~0.03 and I/8 0.34~0.02.
The field-theoretical calculations of Affleck predict '

q = —' v —' =0.615, and' 1/bo = —,', =0.385.
The exponent q 4 is in agreement with the Bethe-
Ansatz solution. Taking that value for granted, and
making standard scaling assumptions, we estimate
v' ) =0.69~0.03. Postulation of hyperscaling, namely
2 —a 2v, gives v 0.69+ 0.02. Hence our re-
sults are consistent, within small uncertainties, with
hyperscaling. Although our estimates of vt ~ and I/bo~~~

appear inconsistent with Affleck's predictions, possible
logarithmic corrections to the critical behavior' may
have systematically shifted the exponents indicated by
the series.

Consider next the results of the disordered-state ex-
pansions for P & 1. We find unequivocally that the di-
merization retains a nonzero value in the absence of an
imposed bond alternation. For P&& 1, D(X 1) saturates
at a value 0.75 ~0.10, compared with the value of 2 at
X =0. Moreover, we find that as A, 1 along a trajecto-
ry such as g, all the quantities po, p2, g", Eg, and D are
singular; thus the entire line X =5=1, P & 1 constitutes a
critical phase, in disagreement with the prediction of
ANeck et al. but in concurrence with the hints from
finite-size studies of the energy gap. ' For P=50, the
exponents pertinent to AFM ordering are y, = —0.15
+ 0.20, y, +2v =0.75+ 0.05, and y=0.25 ~ 0.05. If
one assumes that this dimerized critical phase is Lorentz
invariant, then scaling implies v=0.5+0.1 and g =1.5
+ 0.3—results markedly di6'erent from the values at R.

The indices 1/bD and 2 —a, defined in the same way as
their counterparts at R (except that a nonzero value for
D at k=1 must be allowed for), are estimated to be
I/Bo =0.5 ~0.2 and 2 —a =1.5 ~0.2. An important ex-
ponent which we are unable to estimate is Po, which de-
scribes the vanishing of D(p) along trajectory h.

Our findings regarding the criticality of the spontane-
ously dimerized phase are surprising on several grounds.
First, since spontaneous dimerization is associated with
broken discrete (reffection), rather than continuous,
symmetry, one would not expect D to be singular on ap-
proach to the spontaneously dimerized phase along a tra-
jectory such as g; however, the exponent I/bo ls clearly
less than unity. Second, hyperscaling, as manifested in
the exponent relation 2 —a=2v, appears to be violated
by a significant amount: based on the estimates above,
2 —a —2v 0.5~0.3. The scenario does seem to be
similar to criticality below T, in classical models with
broken continuous symmetry, such as the Heisenberg
model for d &2; perhaps the additional timelike direc-
tion of T=O quantum systems somehow endows the ap-
parently discrete symmetry with features of a continuous
symmetry. Third, it is not obvious why the spin-spin
correlations should become long ranged in the spontane-
ously dimerized phase. This behavior is, however, con-
sistent with a picture for the k, A phase diagram for P & 1

like that in Fig. 1, but in which the Haldane phase has
disappeared, leaving behind the single point k =6 1.

Another surprising result is the very existence of the
phase boundary PR in Fig. 2, although it was anticipated
by the field-theoretic arguments of AfHeck and Hal-
dane. Since the spontaneous dimerization appears to be
the order parameter for P & 1, one expects bond alterna-
tion to play the role of an ordering field, which, accord-
ing to standard dogma, should destroy any transitions for
X41. However, there is no analog of the Yang-Lee cir-
cle theorem for this system, so such a phase diagram is
not forbidden. A useful phenomenological analogy may
be provided by the bicritical point in the classical
Heisenberg model for d & 2, with easy-plane and easy-
axis anisotropy in that classical model playing the role of
P ()~l), and an applied field along an easy-plane direc-
tion playing the role of bond alternation.

To summarize, we have employed series expansions to
investigate the T=O phase diagram and criticality in the
antiferromagnetic, spin-l, nearest-neighbor chain with
exchange anisotropy, bond alternation, and biquadratic
coupling. Many unexpected features of the phase dia-
gram have been uncovered. We find that the disordered
"Haldane" phase, which includes the simple spin-1
chain, cannot be reached by adiabatic continuation from
the disordered "dimer" phase in the space of parameters
studied here. (It is possible that the two phases are actu-
ally connected, but only if a staggered field is included in
the Hamiltonian. ' ) In the absence of biquadratic cou-
pling, and presumably for all —1 (P ( 1, we have found
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that bond alternation in sufficiently small amounts actu-
ally increases the stability of AFM Ising order. A spon-
taneously dimerized, critical phase was found to exist for

P ) 1. Still other questions related to the phase diagram
remain to be explored. For example, what does the X,h,

phase diagram look like for P ) I? One might also want
to learn about the location of the Haldane-XY boundary.

Regarding the criticalities in this model, we have es-
timated a host of exponents, with special attention to
those at the Bethe-Ansatz-solvable point R, and raised
many questions. The criticality of the Haldane-Ising
phase boundary is in excellent agreement with the results
of the classical 2D Ising model. A remarkable result is
the apparent critical behavior in the spontaneously
dimerized phase. We hope the newly discovered phase
boundaries, as well as the concrete estimates of ex-
ponents presented, will motivate further work in the
field. Clearly, the nature of the interplay between the
tendencies towards dimerization and antiferromagnetic
ordering deserves further exploration.
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