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Simulations of the growth of planar invasion percolation clusters exhibit novel dynamic scaling. The
probability to invade a site at a distance r from a reference site at a time t after that site was invaded
behaves as N(r, t) =r 'f(ro/t), where D is the fractal dimension of the invaded region. The scaling
function has the unusual timing behavior f(u)-u' (u((1) and -tt b (it»1), with a=1.4, b=0.6,
and growth occurring mainly around r -t '

PACS numbers: 64.60.Ak, 05.40.+j, 47.55.Mh

Invasion percolation' is a dynamic percolation pro-
cess introduced by Wilkinson and Willemsen motivated

by the study of the displacement of one fluid by another
fiuid in a porous medium. ' Both standard percolation
processes and invasion percolation generate self-similar
fractal structures. A review of fractals and of experi-
mental results obtained in fiuid displacement process-
es is given in a recent book. '

Dynamics of displacement fronts is essential for un-

derstanding displacement processes in oil production,
and invasion percolation is the simplest model with non-
trivial front structure and dynamics.

When water is injected very slowly into a porous medi-
um filled with oil, the capillary forces dominate the
viscous forces, and the dynamics is determined by the lo-
cal pore radius r. Capillary forces are strongest at the
narrowest pore necks. It is consistent with both a simple
theoretical model and experimental observations to rep-
resent the displacement as a series of discrete jumps in

which at each time step the water displaces oil from the
smallest available pore.

Wilkinson and Willemsen simulated the model on a
regular lattice. Sites and bonds represented pores and
throats and were assigned random "radii. " For conven-
ience, one assumes that the easily invaded throats are in-

vaded instantaneously, and one assigns random numbers
r in the range [0,1], representing the pore sizes, to the
sites.

Growth sites are identified as the sites that belong to
the defending fluid and are neighbors to the invading
fluid. At every time step the invading fluid is advanced
to the growth site that has the lowest random number r.

The invading fluid may trap regions of the defending
fluid. As the invader advances it is possible for it to
completely surround regions of the defending fiuid, i.e.,

completely disconnect finite clusters of the defending
fluid from the exit sites of the sample. This is one origin
of the phenomenon of "residual oil," a great economic
problem in the oil industry. Since oil is incompressible,
Wilkinson and Willemsen introduced the rule that wa-

ter cannot invade trapped regions of oil. This rule is im-

plemented by removal of growth sites in regions com-
pletely surrounded by the invading fluid from the list of
growth sites.

Figure 1 shows the results of a simulation of the in-

vasion process. As discussed in more detail below, each
color indicates sites added within a time interval
t 2121. The number of sites, M(L), that belong to the
central LxL part of an L 2xL lattice, with injection
from one side, scales with the size of the lattice,

M(L) AL, with D=1.82.

This is consistent with the experiments of Lenormand
and Zarcone of air invading slowly into a network of
ducts filled with glycerol. These results should be con-
trasted with the ordinary percolation process for which
the cluster is found by occupation of all available sites
with random numbers r (p that are connected to the
seed, and p is a prechosen occupation probability. At the
percolation threshold p p„the incipient percolation
cluster also obeys Eq. (1), but with the higher fractal
dimensionality D 91/48=1.895. . . . There are two
main differences between ordinary and invasion percola-
tion. First, invasion percolation will always span the re-
gion between the injection and extraction sites. There is
no analog to the occupation probability p, and there are
no "invader" finite clusters. Second, invasion percolation
is a dynamic process, with a well defined sequence of in-
vaded sites. Previous studies measured only the static
fractal dimension D of the final aggregate. In this Letter
we present the first detailed investigation of the dynam
2cs.

The first hints to the nature of the dynamics came
from experiments on drying and on slow fluid displace-
ments. " In both cases, the front moved by invading lo-
cal areas in bursts. Figure 1 shows a similar behavior:
Once a new site was invaded, the front tended to stay in

that vicinity. The growth within a time interval t tends
to occur within a connected region, and the different
colored regions have similar linear extensions, of order
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FIG. 1. Invasion percolation with trapping on a 300X600 lattice. The invader (colored) enters from sites on the left-hand edge
and the defender (white) escapes through the right-hand edge. At breakthrough the invader first reaches the right-hand edge and
has invaded 31802 sites. Different colors (left to right on color scale) indicate sites added within successive time intervals t 2121.

r, -t 't . Qualitatively, this can be understood: The in-
vading front exhausts all easily invaded pores, then by
forcing the invader through a difficult pore a new region,
which may have new easily invaded areas, is made avail-
able to the front. The front then moves into this area
until it gets stuck again having exhausted the new easily
invaded pores.

To obtain a quantitative measurement of these time
correlations, we considered the pair correlation function
N(r, t), giving the probability that a site at a distance r
from a reference site is invaded at a time t later than the
reference site. Thus N(r, t)drdt is the conditional prob-
ability that if a site at the position ro was invaded at time
to, another site at a distance between r and r+dr away
from ro is invaded in a time interval dt around to+t
During the simulations, the reference site is successively
chosen to be the last invaded site. After some initial
transient effects, the function N(r, t) is found to be in-
dependent of to. This is expected since the invasion pro-
cess is governed by local rules, and the surroundings of
every new invaded site is statistically similar to the sur-
roundings of any other invaded site independent of how
far the process has developed.

We find that the correlation function obeys the dy-
namic scaling form

N(r, t) r 'f(r'/t), (2)
with the new dynamic exponent

z D.

We also find that the scaling function f(u) is peaked at
u —I, and has an unusual limiting power-law behavior at
both limits,

Q, Q«1,f(u)-' b with a=1.4, b=0.6.u, Q&&1,

This implies that the most probable growth occurs at
r, -t '~D. At time t, most of the region within distance r,
has already been invaded, the rest of the region contains
trapped defender fluid, and new growth there is rare. On
the other hand, the probability to select a new growth
site at r » r, decays rapidly with r.

In our simulations we used the algorithm described
above on lattices of size Lx2L with L in the range
50-400. A simulation on a lattice of 300X600 sites took
30 central-processing-unit hours on an Apollo 4000 com-
puter. We used impermeable horizontal walls, injected
the invader at the left-hand side, and terminated the
simulation when the invader reached the right-hand edge
(see Fig. I). The trapping rule is implemented as fol-
lows. The cluster of uninvaded sites in contact with the
sink is found by the Hoshen-Kopelman'2 algorithm. If a
growth site does not belong to this cluster, then it is
trapped and removed from the list of growth sites. This
global search for trapping is time consuming and is per-
formed only when the last pore invaded is in a position
that may trap a region of the defender. We find that the
initial e6'ects due to the line source of the invading fluid
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decay rapidly and may be ignored for times that roughly
correspond to the time when the invader first reaches a
distance of 2 L from the source line. Beyond that time
we find that N(r, t) does not depend on tp (that is how
far from the source it is evaluated). We thus average
over to to obtain an estimate for N(r, t).

In Fig. 2 we show the correlation function N(r, t) ob-
tained in extensive simulations. First, we note that for
t 1 growth is most probable close to the previously in-
vaded site, and that the growth decreases as a power law
r as r increases. For t ) 1, we find that after a time t
has passed, growth is most probable at some distance r,
away. We find that rt -t '/' with z =1.8. These results
suggest the scaling form given in (2), which leads to the
very satisfying data collapse shown in Fig. 3 with
z =1.82.

The straight segments in Fig. 3 give rise to the limiting
behaviors in Eq. (4), implying that

T
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The r ' factor in the scaling expression (2) is a result
of the normalization of the correlation function: Use of
r " instead gives

which is independent of time only for x = l.
Equation (3) follows from the pair connectedness

function G(r), which is the probability that a site at a
distance r from an occupied site is also occupied. We
may express G(r) in terms of N(r, t) noting that (in d
Euclidean dimensions) the number of sites a distance r
away is —r

G(t) — N(r, t)/r" 'dt —r' u f(u)du . (7)

Here the integral converges. The pair connectedness
function scales as G(r)-r d and it follows that z =D
as given in Eq. (3). This result can be easily intuited: t
is equal to the mass of an invasion percolation cluster
grown around the reference site, as represented by the
different colors in Fig. l.

Numerical simulations' show that the growth sites
form a fractal curve —the external perimeter. ' The
number of growth sites in a circle of radius r is

Ms(r)-r ', where we find' Dg=1.37. In the simula-
tions on strips of width L, we find that the number of
growth sites becomes stationary and fluctuates around an
average value Mg (L)-L '. It is interesting to note that
this new value is consistent with the fractal dimension of
the external perimeter for ordinary percolation given by
D, = —', . We expect the exponents a and b to be related
to D and Dg and possibly to other exponents characteriz-
ing the growth process. However, such relations remain
to be derived.

We have shown that the front of the invader in in-
vasion percolation is characterized by a dynamic correla-

log, (r)
FIG. 2. The correlation function N(r, t) as a function of the

separation r between sites invaded with a time separation t on a
log-log plot, for time separations t 1, 10, 100, and 1000. The
data in the figure were generated in eight simulations of the in-
vasion percolation process on a lattice of size 300x600. The
slope of the rising part of the curves is about 1.5, and that of
the falling part is about —2.

0

log {r /t}
FIG. 3. Log-log plot of the scaling function f(u) =r/V(r, t)

as a function of u =r'/t and with z =1.82 obtained by replot-
ting the results shown in Fig. 2. Finite-size effects result in a
violation of the data collapse for r —L.
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tion function with the rescaling form N(r, t) =r 'f(r'/
t), where the new dynamic exponent z is equal to the
fractal dimension D=1.82 of the invaded region. The
scaling function f(u) behaves as u' for u «1 and as u

for u »1. Such a power-law behavior for both large and
small arguments is rather surprising and remains a chal-
lenge for future theories. '

Hopefully, the present study will stimulate similar
studies on other growth and fluid displacement phenome-
na. For example, fluid displacement at high capillary
numbers leads to viscous ftngering ' having a fractal
structure' ' with a fractal dimension' D =1.64. How-
ever, the scaling structure of this growth dynamics has
not been investigated.
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