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Oscillatory Deformation of Chemical Waves Induced by Surface Flow

Hidetoshi Miike, ' Stefan C. Miiller, and Benno Hess
Ajax Pla-nck Inst-itut fur Ernahrungsphysiologie, Rheinlanddamm 201, D 4600-Dortmund1, Federal Republic of Germany

(Received 13 April 1988)

The dynamic behavior of chemical patterns induced by the coupling of chemical waves and hydro-
dynamic flows in the Belousov-Zhabotinskii reaction was investigated by 2D spectrophotometry and 2D
velocimetry. Periodically varying deformations of chemical-wave profiles were observed in a reactive
layer with a liquid/gas interface. They are due to an oscillatory hydrodynamic flow detected close to the
layer surface.

PACS numbers: 47.70.Fw, 47.20.Dr, 82.20.Mj

Spontaneous pattern formation in far from equilibri-
um systems is of great current interest in many disci-
plines of science. A well-known example is the oc-
currence of circular and spiral-shaped chemical waves in

the Belousov-Zhabotinskii (BZ) reaction. They are
treated theoretically by modeling the nonlinear coupling
of complex reaction kinetics and diffusion. ' The dish
containing a thin solution layer is frequently covered in
order to minimize evaporation, but if it is left uncovered,
a variety of structural phenomena are observed, e.g., sta-
tionary "mosaic" patterns, transient structures, or distor-
tion and decomposition of waves. For an explanation,
the influence of convective flows has been discussed,
which arise from temperature gradients as a result of
evaporative cooling and from inhomogeneities in surface
tension as a result of differences in temperature and/or
chemical composition (Rayleigh-Benard and Maran-
goni-type instabilities). Frequently, a quantitative
comparison is made with analogous patterns in hydro-
dynamically unstable simple liquids.

Recently, we detected that hydrodynamic flow is asso-
ciated with chemical-wave propagation both in covered
and uncovered sample dishes. Remarkably, the flow be-
comes oscillatory, especially at a surface left open to eva-
poration and is possibly entrained by the periodic pas-
sage of waves. In this Letter we apply space-resolved
spectrophotometry' and velocimetry to areas of typi-
cally 3 & 3 mm of wave patterns in an excitable BZ solu-
tion layer. We report on periodically changing deforma-
tions of wave profiles and fronts. It is clarified that the
deformations are not induced by convection in the bulk
of the liquid but by oscillatory hydrodynamic flow near
the surface.

The preparation of an excitable BZ solution has been
previously described. " For velocity measurements, after
filtering the solution through 0.22-pm filter, a small
amount of polystyrene latex particles (diameter 0.48
pm) serving as scattering centers were added. A volume
of the mixture was placed in a dust- and scratch-free Pe-
tri dish at 25~1 C. To obtain a constant period of
wave propagation, a pair of spiral waves was initiated"
(Fig. 1). Time of the experiments started (t -0) briefly
afterwards. The spiral centers were located about 2 cm

away from the dish center, where measurements were
carried out. Note that no CO2 bubbles were nucleated
and no waves were triggered at the dish boundaries. Pat-
terns were investigated with and without covering the
dish (air gap between layer surface and glass cover = 12
mm).

The correlation between wave patterns and hydro-
dynamics was investigated by spectrophotometry and
velocimetry based on 2D microscope-video-imaging tech-
niques. " A He-Ne laser focused to a small area (di-
ameter 0.2 mm) illuminated the polystyrene particles,
thus allowing the detection of local hydrodynamic flow.
The microscope focal plane was usually adjusted close to
the layer surface. Flow velocity was measured every 5 s
by pursuing one or two particles during 1 s on a video
movie displayed on a television monitor. By our also
shining a homogeneous light field (490 nm) through the
layer, particle motion and propagation of chemical ac-
tivity could be traced simultaneously. In addition, video
movies of monochomatic transmitted light without il-
luminated polystyrene particles were recorded to observe
the dynamic characteristic of the chemical waves. Local
time traces of light absorption were obtained by placing
a photodiode in front of a selected spot on the monitor
(corresponding to a diameter (20 Itm), and the local
luminescence of the displayed image sequence was mea-
sured and analyzed by a computer.

1cm

FIG. 1. Pair of spiral waves in a thin BZ reaction layer
(depth 0.85 mm). Transmitted light is measured in a (3x3)-
mm section at the dish center.
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FIG. 2. Temporal trace of flow velocity in the y direction at
the center of a covered layer (depth 0.85 mm). Arrows are the

passage times of wave fronts.
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Figure 2 shows the surface flow velocity at the center
of a covered dish with a pattern as in Fig. 1. The data
parallel to wave propagation indicate that after 3 min '2

a small mean flow (v~ =4 pm/s) is established and after
12 min an enhanced fluctuation occurs [maximum

v~ = 10 lum/s]. ' In the perpendicular component (v„),
we do not find any significant flow velocity. Thus, the
mean flow has an anisotropic nature: it tends to be
directed antiparallel to wave propagation in this geome-
trical spiral configuration. The corresponding temporal
development of wave profiles, observed in a (3x 3)-mm
outer section of the spirals (center of Fig. 1) shows a re-
markable change, just when the enhanced fluctuations in
flow velocity occur. An elongated, faint "patchlike" line
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appears on top of the continuously broadening wave
crests and two cycles of periodic weak deformation of the
wave profiles are recognized (compare Fig. 4 below).

If the same experiment is performed without a glass
cover, an oscillatory hydrodynamic flow is excited spon-
taneously in the y direction after 9 min (Fig. 3). Its
maximum velocity (=40 pm/s) is comparable to the
propagation speed of the waves (=50 pm/s), '3 and its
period (=40 s) is about twice as large as that of the
passage of chemical-wave trains through the detection
area. The amplitude of v„is about 3 times smaller. As
detected by varying the focal plane of the microscope,
the flow amplitudes decrease rapidly with increasing dis-
tance from the layer surface.

The temporal development of the waves in the center
of the uncovered dish demonstrates (Fig. 4): (i) the
wave geometry remains rather stable until r =10 min
[Fig. 4(a)]; (ii) at t = 11 min patchlike bright edges ap-
pear on the wave crests [open arrows, Fig. 4(b)]; and
(iii) periodic deformations from sharp [Fig. 4(f)] to flat
[Fig. 4(h)] and back to sharp wave profiles [Fig. 4(i)]
follow. These are accompanied by weak geometric dis-
tortions with a period close to that of the oscillatory flow
(=40 s). In Fig. 4 no scattering particles illuminated
by laser light were used, but fortunately we detected a
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FIG. 3. Temporal trace of flow velocity in the y direction at
the center of an uncovered layer (depth 0.85 mm). Cover re-
moved at t =2 min. Arrows as in Fig. 2.

1 mm

FIG. 4. Image sequence of the temporal development of
waves at 490 nm under the uncovered condition (without il-
luminated polystyrene particles). Intensity profiles along the
vertical straight line are displayed at the left margins.
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drodynamic instability and wave trains are likely to gen-
erate a mean flow (Fig. 2). There are indications that
they are also an important source of flow oscillations (to-
gether with wave deformations) observed even in a
covered dish, and further experimental verification is un-

der way. Consequently, for flow oscillations in an open
dish, bulk convection caused by evaporative cooling may
well come into play, but does not constitute the main
reason. Convection, as well as the exothermicity of the
chemical reaction and inhomogeneities in chemical com-
position have to then be taken into account.

On the other hand, the experiments show that the dy-
namic wave deformations are a consequence of the oscil-
latory surface flow. The deformations have an effect on
the velocity of wave propagation because they result in

variations of curvature of wave fronts' which also modi-

fy the flow velocity. ' This provides a possible mecha-
nism on how chemically induced flow velocity couples
back to the geometric properties of chemical waves.
Similar arguments may contribute to an explanation of
order-disorder transitions in chemical patterns, when the
deformations become strong enough to disrupt the wave
fronts. ' ' A quantitative analysis of such turbulent
structures, including the possibility of deterministic
chaos, is in progress.
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