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In (2+1)-dimensional models with a Chern-Simons term, there is a periodicity in the parameter
e?/2u, where e is the smallest charge in the theory and u/2 is the coefficient of the Chern-Simons term.
Since p— —pu under the action of time reversal 7, in such a theory the question of T invariance be-
comes involved with the dynamical issue of what are the allowable values of the charge. We show how
cross sections develop T-violating terms for “forbidden” values of the charge. Connections are made
with some recent ideas concerning the mechanism of high-temperature superconductivity.
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(1) Introduction.—In (2+1)-dimensional electro-
dynamics, the possibility arises of a term

AL =% €, A°9%4°, (1.1

the Chern-Simons term. This is of the standard form for
the coupling of the photon to a conserved current,
AL = 5 uA,j° but the current

Ja=€abc0%/A4° (1.2)
is a little unusual. Initial interest in this term is centered
on its interpretation as a gauge-invariant photon mass. '
In this connection, u4 combines with an ordinary photon
mass, AL =+ m2A4? to produce spin-up and spin-down
mass eigenstates of masses (m2+u?/4)"2+ /2.2 The
inequality of these masses is an unmistakable sign of P
and T violation, which of course is no surprise since from
(1.1) we see that u— —pu under P or 7.

More recently interest has focused largely on theories
in which the field 4 has no kinetic-energy term F2.
These theories® have appeared as a general way of im-
plementing fractional statistics,** and in proposals for
effective Langrangian descriptions of the fractional
quantum Hall effect®’ and resonating-valence-bond
states.® In such pure Chern-Simons theories, the sole
appearance of A is in the Chern-Simons term itself, and
in couplings of the form j, A4 to other conserved matter
currents. For definiteness, let us suppose that there is
just one matter current, so that the complete Lagrangian
for A is

Li=ej,A°+ ¥ peapc A2 A (1.3)
Then the field equation for A is simply
eja=— % €acF5. (1.4)

This implies that F is completely determined by the
matter degrees of freedom, and has no independent dy-
namics. Indeed, the implication of (1.4) is that charged
point particles of charge e are also point flux tubes for A4
flux, of magnitude ® =e/pu, while F vanishes everywhere
else. Thus all independent local dynamics have been

squeezed out of A, leaving only global gauge-invariant
degrees of freedom. Charge particles moving around
flux tubes acquire Aharnonov-Bohm phasc:s,9 and thus
(also taking into account the field contribution from the
second term) (1.3) implements @ statistics for the parti-
cles of charge e,'® where

0=e?2u, (1.5)

in the sense that the slow interchange of distant particles
is accompanied by a phase e”®. The flux and charge car-
rying particle states so constructed (anyons) have statis-
tics which continuously interpolate between bosons and
fermions.

(2) Periodicity, T invariance, and spontaneous
breaking.— The statistical interaction is the only mani-
festation of the gauge field A4, in these pure Chern-
Simons theories. As a consequence, they are periodic
under

e?2u— e*2u+2nn. 2.1

What happened to the highly nonperiodic dependence of
the photon mass on u? The point is that by removing
the kinetic energy we have essentially taken m— oo,
This also explains the lack of local excitation of A.

P and T transformations have the action u— — u, and
because of (2.1) we find that they may be good sym-
metries if e?/2u=nn. These values, not surprisingly,
correspond to fermions or bosons depending, respective-
ly, on whether n is odd or even. This condition must be
satisfied by the charges of all states in the Hilbert space
of the theory for P and T to be good symmetries.

The question of the allowed values of charge in a
theory is, however, a dynamical one. Let us suppose, for
example, that a Higgs condensate of charge e particles
forms. Then there will be finite-energy vortices with flux
® =2r/e (indeed, at the classical level one can support
vortex asymptotics with field configurations of arbitrarily
small energy). Reading the field equation (1.4) back-
wards, we find that the vortices carry a charge g =u®,
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and so their statistical parameter is
6, =q®/2=2n’u/e?. 2.2)

Clearly periodicity in e?/2u does not enforce periodicity
in this statistical parameter. Nor, therefore, does T in-
variance in the unbroken phase ensure 7 invariance in
the Higgs phase. For example, if we take the solution
e?/2u=2r, then 6, =r/2.

(3) Cross sections.—How does P and T violation
manifest itself? The most direct effect is an asymmetry
in scattering cross sections. Our greatest interest is in
the scattering of identical anyons, although T violation
also occurs in other cross sections. Suppose we have
identical anyons both of statistical parameter 8, =q®/2.
The associated scattering, in the nonrelativistic limit, is
easily related to the problem solved by Aharnonov and
Bohm in which we scatter a pure charge g off an un-
charged vortex of flux ®. Indeed, studying the two-body
Schrédinger equation for the anyons in Coulomb gauge,
it is found that the contribution of the scalar potential
due to the motion of the anyons, duplicates that of the
vector potential A. Therefore in center-of-mass coordi-
nates we are led to precisely the equation studied by
Aharnonov and Bohm. The correspondence with the pa-
rameter a used in Ref. 9 is 6, = —za. Working in the
gauge A, =0, A,=®/2nr, the wave function describing a
particle incident from the right is w=expl+i(6,¢/x
—krcose)], where k is the wave vector of the relative
motion. The solution to the scattering problem in this
case is

__ +i(8,¢/n—krcose)
y=e

- ikr e Fip/2

L .
—_— 0| ————, 3.1
omisnlel ey G

where the F sign is for 6, > 0 and 6, <0, respectively,
and thus

—isin|6,|e T2
cos(e/2)

fle)= (3.2)

is the scattering amplitude. The appropriate scattering
amplitude in the identical particle case is just fio(®)
=f(¢)+f(@e—n). The absence of a relative phase is
due to the fact that our anyons are just bosons with an
additional ‘‘statistical” interaction. We will comment
further on this below. For a reason that will soon be-
come obvious, we also wish to include the effect of some
additional, nonstatistical interaction, in the amplitude.
The simplest way to accomplish this is to put in a phase
shift by hand, modifying the asymptotics of (—i) 16.1/x
xJ |o,|/z(kr) to

e "ileln2

ilkr—n/4—16,1/2+8)
Qrkr) 2 ¢

+incoming wave) . (3.3)

Converting to the true scattering angle, p=r—¢, the

center-of-mass cross section is therefore

do _ 4(1 —cosd) sin’6,
dp wk 2rk sin?(p/2)
sin26,
—— 41, (3.4)
2k cos?(p/2)

where [ is the P- and T-violating interference term that
we are interested in:

_ _ 8siné, sin(8/2)

- sin(| 6, | —68/2+sgn(6.)p) . (3.5)
rk sinp

It may seem, at first glance, that (3.4) cannot possibly
be correct, since for the choice 6. =nn, n =odd, corre-
sponding to the scattering fermions, the cross section is
independent of scattering angle. However, it must be re-
called that in two dimensions, Fermi statistics do not im-
ply the vanishing of the cross section at n/2. Indeed, in
two dimensions the entire angular dependence of the mth
partial wave is e, and apart from the terms in the
cross section that result from interference between
different partial waves, the cross section is isotropic. In
particular, the first term of (3.4) describes both ‘s-
wave” and “p-wave” scattering. Furthermore, the cross
section (3.4) is invariant under the combined transfor-
mation p— —p, 6,— —86, corresponding to a ‘“com-
plete” P or T transformation (i.e., transforming the an-
gles and performing a compensating P or T transforma-
tion on the coupling constants), as well as under the
coordinate rotation p— p+x. These necessary proper-
ties would not have been maintained if we had intro-
duced a relative phase into the identical particle scatter-
ing amplitude.

Concerning the T noninvariance of our result, we
should remark that introducing phase shifts generically
breaks T “kinematically,” in the sense that the phase
shift, 6, —g,/x, does not have the T-transformed partner,
8—(m—o,n), a8 —(m—6,/n) is not in the spectrum.
Amusingly the interference term vanishes together with
the P- and T-violating asymmetry as we turn off the non-
statistical interaction. Also, note that the part of the
cross section due to the statistical interaction vanishes
for both bosons and fermions.

(4) Comments.—Recently Kalmeyer and Laughlin''
proposed a variational wave function for spin liquids that
is closely related to Laughlin’s earlier and highly suc-
cessful variational wave function for the fractional quan-
tized Hall effect.'> Among the candidates to be de-
scribed by such spin liquids are Mott insulators, includ-
ing the CuO layers crucial to high-temperature super-
conductivity. Laughly also found that the quasiparticle
excitations around this state were half fermions, and a
mechanism of superconductivity, based on this property,
was proposed. These ideas were forcefully elaboratored
in Ref. 13.

Kivelson and Rokhsar!* have criticized Laughlin’s
proposals on the following grounds. The ground-state
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wave function is found to be real, indicating that 7 in-
variance is satisfied for this state. Now in T-invariant
systems, the only possible statistics are those correspond-
ing to bosons and fermions. Related to this is the fact
that the statistical phase may be derived by an applica-
tion of the refined adiabatic theorem (Berry’s phase). '
If the relevant wave functions, for a single quasiparticle
localized at different places, may be taken real, then the
only possible accumulated Berry phase is * 1.

It seems to us that the considerations above provide a
class of field theory models quite closely related to
Laughlin’s proposals, and show how the objections of
Kivelson and Rokhsar may be met. Namely, we have
found a class of models for which all observables that do
not involve globally nontrivial excitations (vortices) pos-
sess a T symmetry, but this 7 symmetry is broken by the
interactions of these nontrivial excitations. The ground-
state wave function, expressed in particle coordinates,
will respect T invariance and is therefore real. However,
we expect that the quasiparticle wave functions, unlike
the ground state, cannot be taken to be real. Note that
Laughlin’s quasiparticles are indeed vortices. Further, in
our language the half-filling-fraction wave function he
uses corresponds to e2/2u =n/% =2r, and from (2.2) we
do indeed have 6, = /2.

This suggests that we should take quite seriously the
possibility that 7 invariance is spontaneously broken in
the high-temperature superconducting state and possibly
in two-dimensional Mott insulators more generally. For-
tunately, this idea is subject to experimental test. T in-
variance has the important macroscopic consequence
that it leads to the Onsager reciprocity relations among
transport coefficients.'® A classic example of an Onsager
relation is the symmetry of the thermal conductivity ten-
SOI Ox, =0)x, and we expect the spontaneous breaking of
T invariance to lead to a nonsymmetric conductivity ten-
sor. Another possibility is a violation of the equality of
the thermoelectric coefficients. It would be most in-
teresting to check for deviations from these, and other
symmetry relations. It should be remembered, however,
that our mode of T violation applies to a single layer of],
for example, CuO, and the consequences of such effects
may be rather subtle for a bulk sample.

Deviations from this and other Onsager reciprocity re-
lations can be computed explicitly for a model of in-
teracting anyons at low density (of course, the relevance
of this model to the condensed, superconducting state is
questionable). Details of such calculations will be
presented elsewhere.

In closing, let us emphasize our belief that, inde-
pendent of any detailed model, the question of the sym-
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metry properties of the new states is a most important,
and experimentally accessible one.
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