
VOLUME 61, NUMBER 18 PHYSICAL REVIEW LETTERS 31 OCTOBER 1988

Nature of the Decon5»ng Phase Transition in SU(3) Lattice Gauge Theory

Frank R. Brown, Norman H. Christ, Yuefan Deng, Mingshen Gao, and Thomas J. Woch

Department of Physics, Columbia University, New York, New York 10027
(Received 3 August 1988)

Monte Carlo calculations on lattices with large spatial volume show that the SU(3) deconfining phase

transition is more weakly first order than previously thought. We have studied the transition for NT 4
and 6 on lattices of spatial volumes 16', 20, and 24 . The 24 x4 calculations show a sharp first-order

phase transition, yielding a latent heat AC/T of 2.54~0.12. The 24'&6 calculations suffer greater
finite-volume smearing, hut suggest that d, C/T4 2.48 ~ 0.24. Correlation lengths increase significantly

near the transition, and the energy plus pressure of the ordered phase depends strongly on P.

PACS numbers: 11.15.Ha, 05.50.+q, 12.38.6c

Numerous Monte Carlo studies of pure SU(3) lattice
gauge theory have focused on the deconfining phase
transition that occurs at finite temperature. This transi-
tion is expected to be first order, and significant numeri-
cal effort has been invested in the determination of the
associated latent heat. The rather small spatial
volumes employed smear out the phase transition, intro-
ducing uncertainties into estimates of the latent heat.
We have undertaken a series of deconfinement calcula-
tions with relatively large spatial volumes that have led
us to revise somewhat our understanding of the nature of
the deconfining phase transition.

Our large-volume calculations employ both a large lat-
tice and a large lattice spacing; simulations on 24 &NT
lattices are carried out on the 64-node Columbia Univer-

sity Parallel Supercomputer, a l-gigaflop, 128-megabyte
machine, and the small temporal extents NT 4 and 6
yield large lattice spacings. (These lattice spacings are
large enough to introduce significant deviations from

continuum behavior. ' )
Our calculations use the standard Wilson action, and

are performed with a modified' " Cabibbo-Marinari
update. The data for the spatial volumes 16s and 203
were obtained with our 16-node computer, ' and the 24
results are from our 64-node machine. On both
machines we compute for each sweep the spatial average
of the real and imaginary parts of the Polyakov loop ob-
servable P(r):

P (r ) - —' tr Qt Ut

Here the product is taken over all temporal link matrices
UI with spatial coordinates r. In addition, 1x1 Wilson
loops with space-space and space-time orientations are
separately averaged over the lattice for each Monte Car-
lo sweep.

With use of standard formulas' the sum and dif-
ference of these plaquette expectation values determine
the quantities 8 —3P and t'+ P, respectively:
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16
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The matrix U(n)„, is the elementary plaquette lying in

the p-v plane at the location n, while the sums run over
all space-time locations n and spatial directions i and j.
8 and P are the energy density and pressure of the sys-
tem, respectively. Their sum, the entropy of the sys-

tem, ' is finite in the continuum limit, but shows large
statistical fluctuations. Although the other combination
C —3'P contains a divergent vacuum contribution it is no
harder to determine absolutely. Because the pressure is
continuous across the transition the discontinuity in ei-
ther of these quantities yields hC, the latent heat.

On the 24 lattices we also calculate the Polyakov loop
correlations for each separation r:

8(r) =,g(P(r+r')P(r')*) .
Ns I'

t
Here the angular brackets represent a Monte Carlo aver-

age and the variable r' varies over the entire 24 spatial
volume. We determine correlation lengths from least-
squares fits of 8(r) to two simple theoretical forms. For
confined values of P we use a sum of eight Boltzmann
factors corresponding to a string potential between the
quark at r+r' and the quark at r' (or one of its seven
reflections in our periodic boundaries):

C (r) = g Zexp &To I r —r; I

i ],8 r li

The sum over r; runs over the eight corners of a 24
cube. Stable fits for Z, 0, and c are obtained with a
minimum fitting radius r;„ that can vary between 2.0
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FIG. 1. The quantity 8+8 computed on (a) 16' x4 and (b)
24'x4 lattices as a function of p. The 16' points each repre-
sent typically 15000 sweeps except for the three points with p
between 5.71 and 5.7175 which contain -50000 heat-bath
sweeps each. The 24 points are all averages over 20000
sweeps, except for the two solid points which were obtained by
our dividing a single 60000-sweep p 5.6925 run into confined
and deconfined sections.

and 6.0. For deconfined values of P we fit to a single
Boltzmann factor describing a screened Yukawa poten-
tial between one of the quarks and the eight images of
the other:

C(r) Pexp g —6 exp(-y, ir-r; i)
i~1,8 ir —r;(

We obtain stable values of the constants P, G, and p for
a minimum fitting radius which varies between 4.0 and
8.0. The errors in both of these fits are determined
directly from the fluctuations seen in the results if the
data are divided into four blocks and each block is sepa-
rately fitted.

Unfortunately the important task of our comparing
the 16 and 24 volumes is made difficult by the sys-
tematic differences between the entirely different pro-
grams used on our two machines. The 64-node program
(24 volumes) is believed to achieve an accuracy close to
the 32-bit precision of the machine. However, the 16-
node program (16 and 20 volumes) gives observables
off by a few tenths of a percent, ten times worse than the
inherent 22-bit precision of the 16-node hardware. Al-
though we have not yet located the source of this error,
we have observed that this discrepancy can be compen-
sated for by associating with the 16-node calculations an
effective value of p approximately 0.02 smaller than that
actually used. We will assume that no other correction
is required to compare the results of the two machines.
(To the best of our knowledge, this is consistent with all
of our data. )

Our principal results concern the behavior of 8+P in
the transition region. Figure 1 shows 8+P as a function
of p for NT 4 and spatial lattice sizes of both 16 and
24 . Note the clear discontinuity in 8+P seen on the
243 lattice and the rapid (but continuous) drop in 8+P
as the transition is approached from above. %e argue
that this correctly reflects the behavior of the infinite-
volume limit; the agreement (after accounting for the
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effective shift in P discussed abave) between the 163 and
24' curves precludes the possibility that finite-volume
smearing has rounded a large discontinuity into a rapid
continuous drop plus a smaller discontinuity. (Converse-
ly, the rise in 8+P shown by the 16 calculation as the
transition is approached from below is seen to be due to
finite-volume smearing because it is absent in the 24'
calculation. ) The latent heat can be read directly off
Fig. 1(b); we obtain hC/T h(C+ P)/T4 2.54
~ 0.12.

The two solid points in Fig. 1(b) were obtained from a
single run divided by hand into separate phases. In Fig.
2, this Monte Carlo evolution is displayed, together with
the tunneling events as identified by eye. The coex-
istence of both phases at a single value of p also perinits
us to obtain the latent heat from the discontinuity in
8 —3P, an approach that is otherwise hindered by the
strong dependence of 8 —3P on p; we obtain
hC/T d, (C —3P)/T 3.78 ~ 0.20. This difference
between this estimate of the latent heat and the value of
h(C+P) given above reflects the errors introduced by
finite-lattice spacing; they should agree in the continuum
limit. We prefer to quote values of A(C+P) as the la-
tent heat not because we believe it has smaller lattice
spacing errors, but rather because 8+P depends much
more weakly than 8 —3P on p, making its discontinuity
easier to resolve.

Figure 3 shows similar 8+P data for NT 6. The
presumed first-order nature of the transition is not as
clearly resolved as it was on the 24 x4 lattice. We sug-
gest that at NT 6 a 24 spatial lattice is not large
enough to obtain fully unambiguous results, much as in
Fig. 1 the structure seen in the 24 x4 calculation is
signi6cantly degraded on the 16 x 4 lattice.

The curve in Fig. 3(b) indicates the assumptions about
the "true" behavior of 8+P that underlie our deter-
mination of the latent heat, hh'/T =h(C+ P)/T

Number of Sweeps

FIG. 2. The evolution with Monte Carlo time of (a) 6+8
and (b) the argument of the Polyakov loop on a 243&4 lattice
for p 5.6925. Each point represents an average over a block
of 100 sweeps. The vertical lines mark the tunneling events
(identified by eye) used to separate the run into confined and
deconfined sections.
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FIG. 3. The quantity 6+8 computed on (a) 16 &&6 (open
circles) and 20'&6 (filled circles) and (b) 24'x6 lattices as
functions of P. The 16' and 203 points each represent between

10000 and 50000 heat-bath sweeps. The 24 points are de-

rived from about 20000 sweeps each except for the three P
values between 5.8875 and 5.90 which each contain approxi-
mately 100000 sweeps.

FIG. 4. Correlation lengths shown as a function of P on (a)
24'x4 and (b) 24'x6 lattices. The open circles correspond to
confined values of tl and the quantity plotted is the product of
the string tension a and NT. The filled circles represent
deconfined values of P and show the value of the Debye screen-

ing mass p.

2.48+ 0.24, as based on our experience with NT 4.
The rise in 8+8 as the transition is approached from
below is attributed to mixing of the phases (which is ob-
served in the evolutions), and therefore discarded. On
the other hand, the sharp drop in 8+8 as the transition
is approached from above is interpreted as the infinite-

volume behavior of the ordered phase, and therefore re-
tained. We report as the latent heat the difference of the
end points of the two curves. The strong P dependence
of 8+8 in the ordered phase together with our use of a
purely deconfined point as the ordered-phase end point is

expected to yield a slight overestimate of the latent heat,
an unknown systematic error introduced by finite-volume
effects. (Using these assumptions to extract a latent
heat from the 16 x 4 data yields results consistent with
24'x 4.)

A further indication of the complexity of the transition
region comes from the behavior of the correlation
lengths'5 shown in Fig. 4. (A typical fit is shown in Fig.
5.) Qn both sides of the transition the correlation length
is seen to increase by a factor of 2 to 3 as the critical
coupling P, is approached. Although the falling string
tension seen as P P, for NT 6 may be interpreted as
a finite-volume effect caused by the mixing of the two

phases seen in the Monte Carlo time evolutions, such

mixing is not seen for the points plotted for NT 4 or the
deconfined points for NT 6. Note that the largest
correlation length seen in these regions (7 ~ 2 for

P 5.90 and NT =6) is still small compared to the larg-
est diagonal separation (21.78) that is accessible to our

analysis.
Thus the deconfining phase transition is seen to be

weakly first order, with a rather small discontinuity in

8+8 embedded in a rapid but continuous decrease in

8+8 as the transition is approached from above, and
with correlation lengths that increase significantly near
the transition. Although this behavior might seem

surprising, it is anticipated by that of the three-state

Potts model in three dimensions. ' The Potts model also
displays a small latent heat embedded in a sharp cross-
over region, and in fact is interpreted as having near-
critical behavior governed by a second-order fixed point
in the superheated branch of the ordered phase. The
similar structure seen in the deconfining phase transition
makes it especially susceptible to finite-volume smearing,
and therefore relatively large volumes are necessary to
obtain accurate results.

We believe that two important conclusions can be
drawn from the results presented here. First, the values
of the latent heat [as obtained from h(8+ P )],
hC/T 2.54 ~ 0.12 and A8/T 2.48+'0.24 for
NT 4 and 6, respectively, are 60% and 25% smaller
than the earlier values. Second, a comparison of the
16 x4 and 24 x6 curves, Figs. 1(a) and 3(b), shows
that the rapid rise in 8+'P following the transition for
NT 4 has broadened considerably for NT 6 with a
slope diminished by almost a factor of 3. This softening
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FIG. 5. The binned Polyakov-loop correlation function as a
function of radius I rI for P 5.90 on a 243x6 lattice. The
histogram shows the fit to a screened Yukawa potential from
which the 11 5.90 point in Fig. 4 was obtained.
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of the structure in the transition region as NT is in-

creased may well continue as the continuum limit is ap-
proached. Altogether our calculations suggest a more

nearly continuous transition than previously thought. If
this behavior persists when the effects of dynamical
quarks are included then the experimental effects of this

phase transition will be more difficult to detect.
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