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A general cluster updating algorithm for Monte Carlo simulations is presented. The method contains
arbitrary probability functions which can be used to minimize the relaxation time. It is applicable to
systems where the interaction energy has a global (discrete or continuous) symmetry. Special cases cov-
er standard site-by-site updating as well as the cluster updating method proposed by Swendsen and

Wang for Ising and Potts models.

PACS numbers: 05.50.+q, 11.15.Ha, 75.40.Cx

Critical slowing down at phase transitions causes ma-
jor problems for computer simulations. The new
configuration obtained after a Monte Carlo (MC) sweep
through the lattice is not independent from the previous
one. At a critical point, not only is the correlation length
& divergent but also the relaxation (or autocorrelation)
time t increases as &7, where z is the dynamical critical
exponent. The statistical error is determined by the
number of independent configurations, Neg=Ngweep/T.
Since for local dynamics z is about 2 or larger,'™” this
presents a major limitation on the size of systems. Intui-
tively, the reason behind such behavior is that—similarly
to the problem of random walk— for local stochastic al-
gorithms a local change needs of order R? steps to
traverse a distance R. Consequently, the time needed to
obtain an independent new configuration is proportional
to £2. (The reader should consult Ref. 7 for further ar-
guments.) Clearly, critical slowing down could be
beaten if one would be able to change larger regions in
one step. Ideas in this direction have been suggested in
the literature. 13

In this paper we generalize a MC algorithm proposed
by Swendsen and Wang (SW). !¢ Their method has been
formulated for Ising and Potts models, and is based on
an equivalence between the configurations of these mod-
els and configurations of clusters in a percolation prob-
lem which has been suggested by Fortuin and Kaste-
leyn.!” For an Ising model in a particular configuration
“virtual bonds” between parallel spins are introduced
with the probability p =1—exp(—2J/kgT), J being the
spin-spin coupling constant. No bonds are introduced
between antiparallel spins. Then clusters are formed
from spins connected by virtual bonds. (The smallest
possible cluster contains just a single site.) The next
configuration of the system is obtained by assignment of
a new orientation independently to each cluster (the
same to each spin in a given cluster). The new orienta-
tions are chosen randomly with uniform weight. SW
have shown that detailed balance holds for this pro-
cedure, and they obtained an essential reduction of criti-
cal slowing down: The dynamical critical exponent in
the energy-energy correlation function for the two-

dimensional Ising model was z=0.35 instead of :z
=2.125 expected for single-spin-flip dynamics.>® Ear-
lier, Sweeny presented a different MC method'® based
on the same correspondence between Potts models and
percolation clusters. Although his method has some ad-
vantages for Potts models in two dimensions, it is not
clear how to generalize it. Below we describe the gen-
eralization of the method of Ref. 16.

We start by considering a general Hamiltonian which
is a sum of pair interaction terms. Let us use the nota-
tion S ={s;} for the configuration of the local (discrete or
continuous) variables s;, and E;(S)=E;;(s;s;) for the
term in the total energy corresponding to a given pair of
sites. Absorbing the factor 1/kgT into the energy, the
partition function is given by

Z=Trse H=Yse ESO =Y e 5. (1)

We shall assume that the Hamiltonian is invariant un-
der a global symmetry transformation g € G:

S,‘*’S,"=gs,', E,‘j(S[,Sj)=E1j(S,",Sj’). (2)

Now we introduce virtual bonds on the links: We
place a bond on the link / with the probability p;[E;(S)]
where the probability functions p;(E;) are arbitrary.
The sites connected by virtual bonds form clusters as
defined above. The probability to obtain a particular
configuration of clusters C is given by

w(S—C)=2X TIIplESITT0—plES, 3)
B(C)I€B I¢€B

where products are taken over links with and without
bonds, respectively. The sum is over different bond con-
figurations associated with the given cluster configura-
tion C. [Note that for links connecting different clusters
one always has a factor 1 —p,.] Now we imagine the
clusters as separate subsystems, and make an indepen-
dent “global” transformation on each cluster. Denote
this configuration by S'=gS, where g € G.=I1;Gx is an
element from the direct product over clusters of the sym-
metry groups G, acting on the kth cluster.

In order that the system relax to thermodynamic equi-
librium we require that the condition of detailed
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balance be
w(S,C— S'):

Po(SHw(S— CIw(S,C—S")
=Po(SIW(S'— OIw(S,C—S), 4)

satisfied by the transition probability

where Po(S) expl— E(S)] is the equilibrium distribu-
tion.

Since E;(S)=E;(S') when both end points of the link
belong to the same cluster, one can rewrite this condition
as

A(S,Ow(S,C— S)=A(S",C)w(S',C—S), (5)

where

A(S,C)Eg(e TESG — pES) . (6)

Here the product is taken over links on the boundaries of
clusters, i.e., links connecting different clusters.

It is useful to consider the set of all configurations
S'=gS obtained from a given S and C with all possible
transformations g € Gc. We can view these as con-
figurations on a hyperlattice: The clusters in C are the
sites, while the group elements gx € G acting on the kth
cluster are the dynamical variables at the corresponding
sites of the hyperlattice. The energy Es c(g) of the
configuration g is defined by

A(S',C)=A(gS,C)=e¢ Esc® )

Now we let this system evolve according to some tran-
sition probability ws c(g— g'), satisfying detailed bal-
ance:

e —Esc(g) —Esclg )w

ws.clg— g')=e sclg—g). 8)

Making one or a few sweeps on the hyperlattice, one
obtains a hyperlattice configuration g and, consequently,
a new configuration S'=gS on the original lattice. De-
tailed balance is clearly satisfied. Equations (6)-(8)
present the general result of this paper.

Before proceeding, let us make a special choice of the
bond probabilities:

1 —L’E/—Eo, if E;<Eq;

pl(E1)=P(El)={0, if E;j=E,, ©

with Eq as a free parameter. Since p;(E;) decreases
with E;, the smaller the energy of the link, the larger the
probability that the two corresponding sites belong to the
same cluster. Thus the structure of the clusters are ex-
pected to be similar to that of the real clusters in the sys-
tem.

For Eqg< E ix=mingsE;(S), the bond probability is
zero, and each cluster consists only of a single site. This
is just the standard local updating procedure.

With increasing E, the average size of the clusters
grows. For Eg= E p.x=maxsE;(S) all factors cancel in
Eq. (6). It means that in this case there is no interaction

between the clusters (or the hyperlattice temperature is
infinite), Es c(g)=0, and one can choose the new
configuration g at random. [Note that for the Ising
model the choice Eo=J=E nax gives p=1—exp(—2J)
for parallel spins and p =0 for antiparallel ones, which
are the probabilities used by SW.] For Eq— + oo the
whole lattice becomes one single cluster, and the relaxa-
tion time goes to infinity. Clearly, there exists an op-
timal intermediate value of E(, minimizing the relaxa-
tion time. As mentioned before, in the case of Ising and
Potts models the choice Fo=F .x leads to a strong
reduction of the dynamical critical exponent.'® The
reason that this simple choice works there is the follow-
ing. At J=J, for these models the value E¢=F . is
the percolation transition point, where infinite clusters
start to appear, as will be explained below.

In general, one should perhaps choose E such that the
corresponding size of the clusters matches the correlation
length in the problem. For most systems this require-
ment yields a value Fo < Epax. At Eo=F nax in general
the largest cluster occupies almost the whole lattice, re-
sulting in a large relaxation time. We have seen this in
simulations with the Zy (or vector Potts) models, but it
also follows from more general considerations. Indeed,
making an arbitrary rotation on a large cluster in an
equilibrium configuration in the case of a generic system
one obtains a nontypical configuration having a large en-
ergy density on the surface of the cluster. The large sur-
face energy is avoided only when the largest cluster con-
tains almost all sites of the lattice. Consequently, the op-
timal value of Eq will be smaller, and the clusters will in-
teract, unlike in the case of E£o=F nax. In this situation
one can use a standard MC method on the hyperlattice
with acceptance probabilities ws c(g— g') satisfying
Eq. (8). Since large correlation length is incorporated in
the average cluster size, we expect that the system on the
superlattice is not critical, and a few sweeps will suffice.
Actually, even one update of a single extended cluster
takes one far away from the previous configuration on
the original lattice, into a new configuration which takes
a long time to reach by local updates. Our simulations
done with the Metropolis method have shown that even
for large hit size the corresponding acceptance rates are
not small. The reason for this is that the cluster
configuration is governed by the “spin” configuration it-
self, rather than given a priori. Hence we expect in gen-
eral a considerable decrease of relaxation times for large
lattices near criticality.

We note here that the choice (9) is not suited for
heat-bath updating of clusters. If we choose p(E;) =1
—expla(E; —E )], 0=<a=1, however, the effective
interaction between the clusters becomes Eg c(g)=(1
—a)XicocEi(gS). For the XY model this is of the
same form as the original energy E(S) and it is no more
difficult to use heat-bath updating for clusters than for
the standard case.
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What really matters is not the average size of clusters
but the cluster size distribution. To reach the shortest
relaxation time, the system might have to be updated on
many different scales. Although a given cluster config-
uration will have clusters of different sizes, a given bond
probability function may not produce the optimal distri-
bution. However, one is allowed to vary the form of this
function from sweep to sweep—e.g., one can choose a
new value (perhaps at random) for the parameter Eq in
each sweep. It is even possible to take different random
values for different links.

The cluster updating method provides another advan-
tage when correlations are measured, since the large
background of accidental coincidences can be eliminated
completely.'® For the average of some functional f(S)
we have

(f>=Zs'P0(S')f(SI)=ZsycPo(S,C)<f>s‘c, (10)
where
Po(S,C)=Po(SIW(S— C) (an

is the joint equilibrium distribution of S and C. Further,
the corresponding conditional average of f is denoted by

(Ns.c=2sw(S,C— S)f(S). 12)

Here the sum is taken over all possible configurations
S'=gS which can be reached from a given S and C. The
improved estimator {f)s c is feasible to compute only
when the clusters are decoupled, ie., for Eo=F pax
which is, in general, a bad value for the relaxation time.
However, one is allowed to update with the optimal E,
and then measure with E¢=FE ., using the improved es-
timator. In some cases the smaller statistical error may
compensate the time needed for an extra clusterization.
As an example, for the spin-spin correlation function in
the Ising model for the special choice E¢=J, we have

(s,-sj>=ZSP0(S)s,-sj =ZcP0(C)5,'j(C) s (13)

where Po(C) is the cluster distribution probability, and
8;;(C) is unity if the two sites are in the same cluster
and zero otherwise. [For the Ising and Potts models, the
possible set of S’ configurations depends only on C, but
not on S, and all spins in a given cluster are in the same
state, (s/s/)s,c=8;;(C).] Hence the correlation function
can be measured simply by counting how many times the
two sites are in the same cluster. With (s;s;)=p <1 one
has for the dispersion in the standard case D(s;s;) =1
— p?, while with the cluster updating method D (s;s;) =p
—p?. Therefore, in our case one needs N =0(1/¢%p)
measurements to reach a relative accuracy ¢, while with
the local algorithm a larger number N =0(1/¢%p?) is
necessary.

For the susceptibility one obtains a simple expression
(with Eq=J)

1 1 _
x=7%}<s,~sj>=<72k‘.v£>sv, (14)

2028

where vi denotes the size of the kth cluster, ¥ =L is
the total number of sites, and v is the weighted average
cluster size which can vary from 1 to V. This quantity is
proportional to different powers of L in different regions:
for J <J. (T <T.) one has v L for J>J.: vee LY,
while for J=J. the correlation function is (s;s;) <1/
r¢=2%n hence vac L2, i.e., the Hausdorff dimension of
the clusters is D=2—n at the critical point (for
Eo=J=J.). Since v grows with E for fixed J, Eq. (14)
shows that the percolation transition defined by the scal-
ing behavior of v is indeed at E¢=J, for the Ising model.
(Obviously, this statement is true in any dimension.
Note that our clusters are smaller than clusters formed
by all parallel spins which for d > 2 start to percolate al-
ready in the disordered phase.)

To see how this method works for models with con-
tinuous variables, we made some tests on the two-
dimensional XY model. At the critical point J.=1.12
the system undergoes a Kosterlitz-Thouless transition. '

The results are shown in Table I. Here y is the sus-
ceptibility per lattice site, and 7, is its relaxation time
defined through the integral of the corresponding nor-
malized autocorrelation function. The standard form
E;=—J %cos(6; —0;) has been used. The hit size in
the Metropolis updating method was |[A6| < z/3. The
acceptance rates were measured separately for different
cluster sizes. Even for large clusters, containing about
100 sites, reasonable (=0.3) acceptance rates were
found. The average cluster size v [cf. Eq. (14)] is also
given in Table I.

It should be noted here that not only was the number
of sweeps needed to generate an independent
configuration less but also that the computer time for
one sweep was shorter. This happens in spite of the ex-
tra complexity of the algorithm, since the number of de-
grees of freedom to be updated in one sweep is much less
than in the standard case. A natural alternative
definition of the relaxation time is to measure it in units

TABLE I. The susceptibility per lattice site y and the corre-
sponding relaxation time 7, measured in sweeps, in the two-
dimensional XY model for 162 and 327 lattices. v denotes the
average cluster size [cf. Eq. (14)] while y={(nq)/V is the num-
ber of degrees of freedom updated in one sweep relative to the
standard algorithm.

L J Eo X Ty v Y

16 0.9 local 69(3) 24(2) 1 1
—0.05 66(2) 14(1) 28.8 0.26
—0.10 67(2) 8(1) 19.1 0.30
—0.15 66(2) 12(1) 13.1 0.34

32 1.0 local 32709) 12009) 1 1
-0.10 327(8) 22(2) 81.7 0.20

—0.15
—0.20

310(6)
311(8)

21(1) 43.3 0.23
23(2) 25.3 0.27
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where the same number of degrees of freedom is updated
as in one sweep with the local algorithm (i.e., ¥ =L¢).
This is obtained by multiplication of r, in Table I by
(no)/V where (no) is the average number of clusters.
This factor is also given in Table I. The results show a
considerable decrease in relaxation time, even with the
conservative definition. Clearly, much more data would
be necessary to determine the dynamical critical ex-
ponent.

Finally, a few comments are in order.

(a) The method we introduced is quite flexible and its
potential is not exhausted by the type of calculation
presented above. In principle, one should be able to find
a best strategy within the given framework.

(b) Although not directly applicable in this form, the
method can be extended to lattice gauge theories as well.
This work is in progress.

(c) Several papers on generalizations of the SW algo-
rithm have appeared in recent months.?°-?> The present
method has the advantage that the average cluster size
can be tuned to minimize the relaxation time. Although
the method proposed by Wolff?' has such a freedom, the
original action is modified there.

The author thanks Z. Racz for patient explanation of
some questions in critical dynamics and extensive con-
versations, and A. Patkods for a discussion on the planar
model.
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