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Self-Avoiding Walks on Randomly Diluted Lattices
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We present new results of Monte Carlo simulations for self-avoiding walks on randomly diluted square

and simple-cubic lattices performed very close to the percolation thresholds. Our results indicate the

asymptotic behavior of the walk dimension to be rather similar to the undiluted lattice even at critical di-

lution.

PACS numbers: 05.40.+j, 36.20.Ey, 61.41.+e

The effect of the environmental disorder on critical be-
havior is a long-standing problem in condensed matter
physics. When the disorder is itself critical, the question
is particularly delicate as two diverging lengths possibly
compete. In this Letter, we address a particularly con-
troversial case of self-avoiding walks on critically diluted
lattices, relevant to linear-chain polymers in the dilute
solution confined in a porous media. This question was

first raised by Chakrabarti and Kertesz, ' who applied
the Harris criterion to the disordered n-component spin

system in the n 0 limit, and has been of much contro-
versy for the last few years. '

The Harris criterion states that if the specific-heat ex-
ponent a is positive, then the fixed point for a pure sys-

tem is unstable and thus the critical behavior for any
amount of disorder is expected to be different from that
for the normal system. Applied directly, it would imply
that a crossover should occur for d (4 since a for self-
avoiding walks (SAW's) is positive. Derrida has also
studied SAW's on random strips and found an indication
of a change in the critical behavior even for a weak dilu-

tion. On the other hand, Harris claimed that the disor-
der average is very much trivial and the critical behavior
of SAW's remains unchanged for any amount of disor-
der. This has been partially supported by field-theoretic
renormalization calculations.

Recently Lyklema and Kremer presented an argu-
ment that the randomness is irrelevant except at the crit-
ical concentration of undiluted sites p, above which an

infinite network appears. They argued that the end-to-
end distance is greater than on the full lattice and that
this behavior becomes singular as p p,+ so that the
Flory exponent p, is expected to be greater than the full
lattice value. However, a closer inspection raises a ques-
tion of whether this argument rigorously rules out the
possibility of an equality even for an asymptotically large
number of steps N. We thus expect

Vp~ V,

where vp is the Flory exponent on the diluted lattice of
concentration p and v is the corresponding value on the
full lattice. The neglect of this possibility may have
misled the conclusions of some published works.

The only previous Monte Carlo work was performed
on a diamond lattice, and it indicated no change in the
Flory exponent for a weak dilution, but close to p„a new

higher value v~ =- —', was observed. This value of v~

agrees surprisingly well with the simply modified Flory-
type formula vF 3/(D+2), where D is the fractal di-
mension of the critical percolation cluster. This has also
been supported in two dimensions by simple, two-

parameter cell renormalization studies, ' where the
random fixed point is found to be unstable with respect
to the nonrandom fixed point.

Unfortunately, however, the agreement between
Monte Carlo simulations and the modified Flory formula
seems to have been accidental, being dependent on an er-
ror" in the data analysis in the original Monte Carlo
work. After correcting for this error, and otherwise us-

ing their own method of analysis, their data would yield
an estimate for v~, of about 0.62 or even less, thus mak-
ing the answers to all related questions inconclusive.

In this Letter we present new results of Monte Carlo
simulations for SAW's performed on the site-percolation
clusters both on the square and simple-cubic lattices.
We focus our study for p very close to p„with our values
of p including p 0.59273 for the square lattice and

p =0.312 for the simple-cubic lattice. The best currently
available estimates of p, are 0.592745 ~ 0.000002 (Ref.
12) for the square and 0.3117~ 0.0003 (Ref. 13) for the
simple-cubic lattice, respectively. We will focus in our
present study mainly on the exponent v~, leaving other
aspects of the problem to a subsequent paper.

Our method is a Monte Carlo simulation using the
Hoshen-Kopelman algorithm' developed for percolation
and a simple sampling method for SAW's. ' More
efficient enrichment techniques were found to produce
unacceptably biased samples in this particular problem.
Site-percolating incipient infinite clusters are defined as
a cluster spanning a lattice L" sites along all coordinate
direction. After identification of such a cluster, opposite
faces are connected by the periodic boundary condition
for performing SAW's on them (to reduce boundary and
finite-size effects). We use L =100 for the square and
50 for the simple-cubic lattice. While these values are
not large, they are sufficient for our purposes as dis-
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cussed below.
SAW's are started on this injinite cluster from many

randomly chosen points (500 and 1000 in d=2 and 3, re-
spectively); the number started from each being 200
times the number of occupied neighbors of that point.
The total number of starting points with one or more
SAW's surviving to twenty steps in 1=2 is almost
700000, decreasing to about 5000 for sixty steps. In
d 3, this number ranges from 230000 for twenty steps
to 1225 for fifty steps. The average is first taken over the
SAW's for a given disorder configuration C, and then the
disorder average is carried out for many different C.

We concentrate on the mean-square radius of gyration
((sg)~)c rather than the end-to-end distance since the
statistical Auctuation of the former is much smaller. The
actual values of ((sg)u)P for d 3, for example, range
from (2.76~0.06)% for N 20 to (5.47+ 0.69)% for
N 50. We have confirmed numerically that the two
measures of chain lengths show the same trend. The
computing time required was about 20 min per cluster in

d 2 and 2.5 h per cluster in d=3 on machines such as a
VAX 11/750; some work was also done on a Control
Data Corporation Cyber 205.

It should be noted that, for any given N, not every
cluster can support an ¹tepSAW, and an average ra-
dii of gyration of N-step SAW's could only be defined
over clusters that support at least one such walk. The
ensemble of such clusters will be smaller for increasing
N. It remains unproven that a disorder average over
such successively smaller ensembles gives the same
asymptotic N dependence for the radius of gyration as

0.7

vg v+bN +cN '+ (3)

where 5 is the leading correction-to-scaling exponent.
Our data for vtv on the simple-cubic lattice for

p 0.312 averaged over 240 percolating clusters are
compared in Fig. 1 with the data on the fully occupied
lattice. For small N, the value of v~ is greater than on

the full lattice, and the two are nearly parallel up to
about the 25th step; however, beyond that it seems to de-
crease far below the previously reported value, 3, for the
diamond lattice. s The value of v~ at N=50 is about
0.612+ 0.01, and since the intercept with the N ee axis
represents the Flory exponent, we expect v~ to be even

smaller than this. With these data, it would require an

unjustifiable bias to conclude that v~, is greater than v of
about 0.59. ' Our data indicate that v~ cannot be very
different (if at all) from the full lattice value.

the average over the infinite cluster alone. However,
since asymptotically long SAW's can exist only on the
infinite cluster, it appears that considering only the
infinite cluster is permissible.

We define an effective value vN for the Flory exponent
v arising from SAW's of N steps or less, by

N«s|2v) w)c 1
2N Iv

«sl')g)c+(&s~2)~)c+2 g &&s )u)ci~2
and express our main results in terms of v~. Here,
(. . . )u denote the average over all SAW's on a given
disorder configuration and (. . . )c denote the average
over the disorder configurations. If the correlation to
scaling for this quantity is a power law, then then the
asymptotic expression for v~ should be
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FIG. 1. v~ vs N for the simple-cubic lattice at p 0.312

compared with the fully occupied lattice. Error bars indicate
standard error over six batches. Indicated on the ordinate are
the values (0.62) that Ref. 8 would give after correction of
their error and the full lattice value (0.588).

FIG. 2. vie vs N for the square lattice at p =0.59273 com-

pared with the fully occupied lattice. Error bars indicate stan-
dard error over seven batches.
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Our data on the square lattice for p =0.59273 aver-

aged over 1400 clusters are plotted in Fig. 2. The behav-
ior of v~ is similar to that of the simple-cubic lattice,
suggesting that the Flory exponent is again not very
diff'erent from that on the full lattice.

Figure 3 is a log-log plot of the mean-square radii of
gyration for p close to p, divided by the data on the full
lattice as a function of N, for square and simple-cubic
lattices. For the square lattice, the plot becomes flat al-
ready for N & 30 indicating that the lattice dilution sim-

ply aN'ects the nonuniversal amplitude of the scaling An-
satz with the Flory exponent remaining unchanged. In
three dimensions, the result is somewhat less clear. Al-

though we do not observe an asymptotic flat region, the
slope of the plot continuously decreases, suggesting that
N 50 is not long enough to estimate v in this way.

These results are consistent with the raw data of the
earlier Monte Carlo work, taking into account the
difference of lattice type and the obvious calculational er-
ror. " If we neglect a decreasing trend in v~ in Fig. 1,
and compute v~ from our data by the same method as in

Ref. 8, using only the corresponding data points, we get
v~ =-0.615. This is close to what one would get from
their data after the required correction. "

There remains a concern that the behavior observed in

Figs. 1 or 2 resembles a crossover from one universality
class to another. Indeed, we would expect such a cross-
over to occur at the chain length R-( where ( is the
coherence length for the percolation problem at the given
value of p. In our case, however, g is of O(10s) for
square and O(10 ) for simple-cubic lattices and much
longer than the end-to-end distance of SAW's. There-
fore a full crossover is impossible. We have also
confirmed this directly by plotting the number of sites on
the percolating cluster as a function of distance from a
center, then averaging over many centers and disorder
configurations. No crossover was found in the slope of
such a plot from the fractal dimension D to the lattice
dimensionality d.

The crossover discussed above was considered by a

number of previous studies ' ' and a scaling form for
R was postulated by the following:

Rrs-N 'f(N '/g),

where f(x) is supposed to behave as

f(x) const as x 0,
(V —

Vp )/Vp-x ' as x~~.

(4)

(5)

&.65

Although some numerical support for this form of scal-
ing was claimed with use of v~, of —, in three dimen-

sions, a closer inspection of those data raises some seri-
ous questions about the quality of data collapsing and
the consistency with Eq. (5). We will give a reanalysis
of their data in a subsequent paper.

We also study, from our own 3D data for various
values of p, the proposed scaling function of the mean ra-
dius of gyration in terms of the scaling variable

Vperc /Vp

x =N
i p —p, i

' where v~ is left as a parameter. If
v~ =0.59 is used assuming that the Flory exponent
remains unchanged for any p, then the plot is similar to
Fig. 3 except for a change in the horizontal scale. Such
a plot (not shown) produces neither the correct x~ 0
behavior nor data collapsing. The former result is ex-
pected because the length of the SAW's for the simple-
cubic lattice is not suScient to give the asymptotic ex-
ponent. Since the observed value of vtv is 0.612~0.01
at N =50, we may try to test scaling with this value for
vz. The result is displayed in Fig. 4. Unfortunately our
data for different p are far apart; note the two breaks in

the abscissa of Fig. 4. However, they do seem to give the
correct x 0 behavior, while the case for data collaps-
ing is weak at best: The x~ 0 limit seems to depend on

p, and for x»1 the data seem to give parallel lines
without collapsing into a single line.
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FIG. 3. Log-log plot of ((s &~&z close to p, divided by (s &

on the full lattice, vs %, for square and simple-cubic lattices.

FIG. 4. Test of crossover scaling [Eq. (4)] from our data on

the simple-cubic lattice, for the trial choice of v~ =0.612. The
maximum lengths of the SAW's range from 50 for p 0.312 to
100 for p 0.5, and the lines drawn are for visual aid only.
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Beyond numerical difficulties, we may note that there
exist several other equally plausible crossover scaling
Ansatz with the same N dependences as (4) in both the
fractal and Euclidean limits but with different p depen-
dences if v~ &v. This observation again leads us to
suspect that the only reasonable, simple scaling form
would require v= v&, .

Thus, based on our Monte Carlo data, we have

demonstrated that the critical behavior of SAW's even at

p, is similar to that of ordinary SAW's, rather than very
different as was widely believed. In addition, simple

scaling in terms of the ratio of two diverging lengths does
not appear to be consistent with our data. Our result is

different from the case of some regular fractals where v

does change. ' ' This reinforces the idea of Rammal,
Toulouse, and Vannimenus' that the Flory exponent of
SAW's depends on many aspects of the fractal substrate.
Such effects of percolation clusters evidently conspire so

that the disorder average leaves the critical behavior as-

sociated with v unchanged.
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