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It is proposed that surfaces of crystals which reconstruct with broken orientational symmetry and ex-
hibit an anisotropic intrinsic stress tensor are unstable to the formation of elastic-stress domains. Thus
the ground state of suck a surface is not uniform, contrary to previous expectations. Evidence of this for
the Si(001) surface is discussed.

PACS numbers: 68.35.8s, 03.40.DZ, 68.35.Md

It has always been assumed that the intrinsic ground
state of a facetted surface of a crystal, which in general
includes a reconstruction, is otherwise atomically smooth
and uniform. In this Letter we propose that there exists
a class of surfaces where this idealized ground state is
not obtained. Specifically, we demonstrate that an an-
isotropy in the intrinsic surface stress and a degeneracy
in reconstructed phases lead to the spontaneous forma-
tion of elastic-stress domains on the surface of a solid.
The importance of surface stress in driving surface
reconstructions and creating misfit dislocations has been
recognized in previous work. ' The idea introduced
here, however, is fundamentally different, and more
analogous to the domain structure in magnetic systems
which arises from the energy of long-range dipolar in-
teractions.

Our analysis will proceed as follows. We shall first use
continuum elastic theory to derive general equations for
the formation of domains on a surface. Then we use mi-
croscopic tight-binding calculations to obtain the stress
tensor for a specific system: the (001) surface of silicon.
Our choice is motivated by the startling and as yet unex-
plained results of a recent experiment by Men, Packard,
and Webb on the effects of applied strain on Si(001).
Indeed, this experiment provided inspiration for this
work and we believe may provide evidence for some of
our conclusions.

The two-dimensional intrinsic stress tensor of a sur-

face is defined by
1 dEsurt (1)

de;,
where E,„,t is the surface energy per unit cell, e;, is the
two-dimensional surface strain tensor, and A is the sur-
face cell area. The indices i and j label directions in the
plane of the surface. Consider now a surface reconstruc-
tion involving broken rotational symmetry, thus allowing
for two or more reconstructed phases having the same
E,„,t but for different orientations and therefore differ-
ent intrinsic stress tensors crj. If the surface has
domains of the different reconstructed phases, the system
may lower its energy by elastic relaxation. As we shall
see, the domain sizes are very large compared to atomic
dimensions, so that continuum elastic theory is ap-
propriate. Prior to relaxation, the intrinsic stresses at the
surface generate a force density given by

ft(p) Bjcr'j(p) ~

Here p =(x,y) is the position vector on the surface. The
displacement u(r) of the medium at r =(p,z) in response
to f;(p) can be written in terms of an elastic Green's
function g,j(p,z):

u.(r) = d'p'g. , (p —p', z)fj(p'), (2)

where a runs over (x,y, z). g depends only on the bulk
elastic properties. The elastic relaxation energy E,1 per
unit area is then the integral of the force density times
the displacement of the medium:

E,(= — d p ft(p)u;(p) = —
2 „Jd pd p'g;j(p —p', 0)f~(p)fj(p'), (3)
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If the domains alternate along the x direction with spac-

where L is the system size. Thus the problem of calcu-
tlating E,1 reduces to a two-dimensional surface problem

where the bulk properties enter only through the 2X 2
surface Green's function gj. (p) gj-(p, z =0).

For definiteness, consider a domain structure consist-
ing of two domains, A and B, with

ing l, as illustrated in Fig. 1, then each boundary has a
force density of the form

f;(p) =+ Fpb;„8(x —xp), (s)

Eei= —
2 QG, t f~(G, ) t'g, (G„).

where xo is the location of the boundary and Fo
=os —rr&. The calculation of E,~ from Eq. (3) is most
easily carried out in reciprocal space:
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In order to sim lifp i y this calculation we as
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(7)

where p and v are the bulk modulus and ' '
omodulus and Poisson's ratio of thu modulus and ' '
o e medium, res ectivep ctively. Using Eqs. (5) and (7 to evaluat7 to evaluate
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1
Eel = e pFp+
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If l is being held fixed and E,~ is minimized with respect
to the fraction p, we obtain

ext

p =—tan
2E'

(i3)

where

UFO(1 —v)
e(l) =-

4lp
(i4)

Equation (13) gives the relative abundance of the two
domains on the surface as a function of external strain
for a situation of quasiequilibrium, where l is being held
fixed by surface miscut or by other kinematical con-
straints. In the case of global equilibrium, where both p
and I may vary, E,~

is minimized by

l = l 0 sec(np/2) (isa)

impose a maximum average terrace size), rather than by
energetic considerations.

We consider now the case when an anisotropic exter-
nal strain e'"' is applied to the surface. This breaks the
orientational degeneracy of the surface energy E,„,f, and
the favored domains will grow while the others shrink. '

Returning to our model example of striped domains, we
can readily generalize to the case of alternating A and B
domains of unequal widths (1+p)l and (1 —p)l, respec-
tively. Then Eq. (10) generalizes to

ext

p =—sin
z 2e(!p)

(15b)

The dependence of p on e'"' is shown in the bottom panel
of Fig. 2, for both quasiequilibrium and global equilibri-
um. In the region where the applied strain is small, both
curves coincide, with slope at e'"' =0 given by eo= e(lo).
However, for large external strain, the behavior is
different. When l is fixed, the minority domains shrink
with a width inversely proportional to the applied strain.
But if l is allowed to vary, the majority domain width

diverges, while the minority domain width approaches a
constant value 2lo/z, as e'"' approaches e„;,=2 e/oz.

Above e„;t a uniform phase, i.e., one domain, is pre-
ferred.

We now apply these results for the specific case of the
(001) surface of silicon. This surface has a twofold de-

generacy in its reconstruction. It can form domains of
(2x 1) or (ix2) symmetry depending on whether atoms
on the surface form dimers in the x or y directions, re-
spectively. The lowest-energy domain walls consist of
single-layer steps" as shown schematically in Fig. 1.
The intrinsic stress tensor of each of the surface domains
has the form given by Eq. (4). Here o~~ and o~ are the
components parallel and perpendicular to the direction of
the dimers, respectively. To calculate the surface
stresses we use a semiempirical tight-binding theory for
structural energies. ' In this theory, the total energy E
is expressed in terms of the band-structure energy, which

is calculated within a realistic tight-binding Hamiltonian

0, a sum of pairwise ionic interactions, and an on-site
Coulomb repulsion term. ' The stress tensor then takes
the form

where the sum is over all occupied states n, a and P
denote atomic sites, d, p is their separation, and V,p is the
interionic potential. We obtain oi =0.035 eV/A. and
cri = —0.035 eV/A . ' Note, this predicts that the sur-
face is under tensile stress along the dimer direction and
under compressive stress normal to the dimers. Thus the
Si(001) surface satisfies the two conditions stated in the
first paragraph: It has two degenerate phases, (2x 1)
and (1 x2), and its surface stress tensor is anisotropic,
with Fo =oi —o~ =0.07 eV/A .

We are now in a position to analyze and explain quan-
titatively the experiment of Men, Packard, and Webb.
Their results are shown in the top panel of Fig. 2. They
observe that upon annealing, the fraction of one type of
domain grows at the expense of the other when an exter-
nal strain is applied to the surface. The domains for
which the applied compression is along the dimers are
the ones that grow, in agreement with our calculated sur-

face stress tensor. When the external strain is released,
hoivever, the surface returns to its "initial" conftgura
tion of equal domain populations This sur. prising result
is consistent with our idea of spontaneous formation of
stress domains, where the ground state of the surface
corresponds to a domain configuration. Comparison of
the experimental intensities of domain populations with
the theoretical curves (top and lower panels in Fig. 2, re-
spectively) suggests that the experimental surface is only
in quasiequilibrium [see Eq. (13)]. This is presumably
because of local surface miscuts or kinematic considera-
tions which allow for only local equilibration. Indeed,
the difference in the data between positive and negative
applied strains is indicative of kinematic constraints.

With our calculated value of the stress anisotropy Fp,

and our fitting the experimental data to determine
ep =0.03%, we can predict the characteristic size of the
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domains using Eq. (14). We obtain a value for l be-
tween 300 and 1000 A. The uncertainty comes from the
fit of eo, from the choice of bulk elastic constants, and
from the uncertainty in Fo. This length scale is con-
sistent with the experiment of Men, Packard, and Webb,
which puts a lower bound for I of approximately 500 A.
From Eqs. (9) and (11) we also obtain C|-0.01 eV/A
and C2-0.003 eV/A. A previous calculation of step en-

ergies by Chadi, " using a similar tight-binding model,
gives 0.003 and 0.039 eV/A for the two types of single-
layer steps on Si(001); these numbers, however, repre-
sent the energy of creating a step minus the elastic ener-

gy of relaxation of Eq. (10).
Finally, we have assumed that the stress domains on

the Si(001) surface have the form of strips, as shown in

Fig. 1. In principle, however, one should test all possible
patterns to find one which minimizes the energy of the
system. In the case of Si(001), domain walls are steps
which come in two types, one of which is much lower in

energy than the other. " The fact that a striped pattern
can be formed from one type of step alone, while a
checkerboard pattern requires both, argues in favor of a
striped domain structure. We note that striped domains
also occur if a local surface miscut is controlling the
domain size. In any event, our general conclusions are
still valid regardless of the particular form of the domain
structure. Specifically, any surface which reconstructs
with degenerate phases that have anisotropic intrinsic
surface stress tensors will be unstable to the formation of
elastic-stress domains and will exhibit the behavior pre-
dicted here.
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