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Theory of the Raman Response in Fibonacci Snperlattices

Chumin Wang and R. A. Barrio
Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico,

04510 Mexico, D. F., Mexico
(Received 21 March 1988)

A microscopic theory for obtaining the polarized Raman spectrum of Fibonacci chains is developed
and applied to GaAs-AlAs heterostructures. The results of the theory, without adjustable parameters,
are compared with experimental data, and remarkable agreement is attained. The treatment is per-
formed in real space and, although this system is nonperiodic in a strict sense, it retains many properties
usually associated with the translational invariance of crystals. Because of its computational efficiency,
this theory is suitable to other finite-size systems.

PACS numbers: 63.50.+x, 63.10.+a, 78.30.Ly, 78.65.—s

The interest that many physicists have shown in quasi-
crystals arises mainly from the fact that these present
properties that were once associated with the translation-
al invariance exclusive to crystalline structures. Real
fivefold diffraction patterns ' caused consternation
amongst crystallographers. However, the existence of
space-filling infinite structures in two dimensions with
fivefold symmetries was familiar long before. Quasi-
crystals in one dimension (1D) can be obtained from
structures which are strictly periodic in a space with
more dimensions. Namely, the Fibonacci 1D system
preserves somewhat the crystal properties of the 2D
square lattice from which it is derived. These ideal sys-
tems have acquired greater relevance because of the re-
cent technical developments that have allowed the syn-
thesis of real superlattices with a Fibonacci ordering.
Physical properties of these real systems can be tested
experimentally; for instance, Raman scattering is ideal
for vibrations, since the Raman activity of a given nor-
mal mode is governed by selection rules arising from
conservation of the crystal momentum (k). In truly
disordered systems, the Raman spectrum (RS) is con-
tinuous, since the k conservation is relaxed.

Raman spectra taken from GaAs-A1As heterostruc-
tures, built up in a Fibonacci sequence, show discrete
peaks at certain frequencies in the acoustic region
(~ 100 cm ') that follow a "golden section" progres-
sion. Furthermore, each peak is split into doublets, a
fact that was explained in terms of an incommensurate
folding of a fictitious Brillouin zone, and of the conserva-
tion of the momentum q of the light. It is not clear why
one should invoke zone folding, as in the case of periodic
perturbations, to explain the phenomenon in this system.

The main purpose of this Letter is to present a theory
without the assumption of any pseudoperiodicity in the
direction of the Fibonacci stacking of planes.

Any microscopic theory, attempting to explain the Ra-
man effect in solids, should take into account two funda-
mental physical quantities of the system: the dynamical
correlation between the atomic motions, and the changes

in the local polarizabilities of the atoms during vibration.
The Raman cross section R(ro) can be thought of as pro-
portional to
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where al is the polarizability tensor associated with the
atom at site l with coordinates rI, and G is the
displacement-displacement Green's function. The polar-
ized part of the Raman tensor can be approximated by a
model which allows it to be written as a linear function
of the bond stretching, and therefore the Raman activity
of totally symmetric sites is nil. In cases similar to
GaAs-AlAs heterostructures, this means that the terms
in square brackets select only the atoms that lie in the in-

terfaces between the materials, which are the ones in

nonsymmetric sites. Because not all the elements of G
are needed, one can renormalize out the correlations be-
tween symmetric sites. This can be accomplished by our
following the methods sketched in Fig. 1.

The structure in Fig. 1(a) consists of alternating
blocks of GaAs and A1As, containing N, N' atomic
planes of the (001) type of GaAs and M planes of A1As.
The Fibonacci sequence is followed between blocks
A M+N and 8 M+N'. The first step consists of our

mapping the 3D crystal onto a 1D linear chain, by
defining a two-dimensional k vector lying on the (001)
type planes that form the interfaces, as has been done for
Si crystals. ' This is shown as step (a)~(b) in Fig. 1.
Next, since only the As planes in the interfaces between
the two materials are Raman active, one uses real-space
renormalization techniques to eliminate the coordinates
of the intermediate planes, which results in frequency-
dependent effective force constants y(N, co), between the
As renormalized planes i with frequency-dependent site
energies D(i, co) This is depicted . in Fig. 1 as step
(b)~(c). After these steps, Eq. (1) can be written as

1988 The American Physical Society 191



VOLUME 61, NUMBER 2 PHYSICAL REVIEW LETTERS 11 JULY 1988

where i and j are labels for the As selected planes; thus

the distance between interfaces is r(i) r—(j ). The Gk is

the Fourier transform of G with respect to the 2D k vec-

tor. The factor ( —1)' ' arises from the change of phase
between adjacent interfaces, which is noticeable in Fig.
1. The absolute value of the constant in square brackets
in (1) is absorbed into the proportionality constant C.

We have devised a method to overcome the difficulty
of the summation, which allows (2) to be calculated ex-

actly, with very little computational effort. If one defines

g(i,j ) =Gk=0(i,j)exp[iq [r(i) —r(j)]],

the equations of motion for the Green's functions can be
conveniently written as

[Mco —D(l, o))]g(1,1)=1+ y(N, ru)g(2, 1)b)v,

[Mcu —D(2, co)]g( 21)b Jv=y(N, co)g(1, 1)+y(M, co)g(3, 1)bMb1v,

[Mco —D(l, co)]g(1,2)blv = y(N, a))g(2, 2),

[Mco —D(2, a))]g(2, 2) =1+y(N, co)g(1,2)bjv+ y(M, co)g(3, 2)bM,

[M~' —D(1,~)]S(1)=1 y(N—, ~)S(2)bg,

[Mco —D(2, co)]S(2)=1 —y(N, co)S(l )b~ —y(M, co)S(3)b~,

where M is the As mass. The factor b~ =exp(iqdz)
takes into account the phase shift included in g, and the
width d~ of a block with N planes can take only three
values, depending on the nature of the block (N, M, N').

~ Al

O~ Ga

0 CO 4s

(.o)

y( N, QJ )

C~)

(a) + (b) +(c)
FIG. 1. Schematic representation of the two renormaliza-

tion processes folio~ed in the model. The real atoms are repre-
sented by circles, the renorrnalized planes are flat ellipses, and

the final chain is formed by interface As sites with eA'ective site

energies D and force constants y.

The partial summations S(i) =p~ ( —1)' ~g(i,j ) can be
obtained by choosing all the equations with the same in-

dex i in g(i,j) Notic. e that one can write "equations of
motion" for the S(i), which only differ from the original
equations by a sign. These can be solved by the
transfer-matrix method. " The final answer is R(c0)
= ( —Ceo/x) Imp; S(i) More . details of this calculation
will be given elsewhere. "

Let us use a Born Hamiltonian, with interatomic
central-force constants a =3.83x10 dyn/cm, for GaAs,
and a' =4.00x 10 dyn/cm, for A1As. The corresponding
noncentral-force constants are P =2.39x10 dyn/cm and
P' =2.66 x 10 dyn/cm. These values were extracted
from a model' that fits the acoustic part of the density
of states (DOS) reasonably well. In the particular stack-
ing of the experiment, N=30, M=12, N'=14, and the
total number of A-B blocks is 377, which corresponds to
a gene-ation number of 13 in the Fibonacci series.

Figure 2(a) shows the vibrational DOS at k =0 for the
interface planes, obtained with

p(ro) = —(2Mco/z) Im Tr g; Gk =a(i, i)
It should be noticed that the acoustic band (0( co ( 165
cm ') is quite different from the GaAs optical bands
(165( ro ( 235 cm ') and from the A1As optical
modes (280 ~ co ~ 330 cm '). These latter modes
should be around 400 cm '. However, they cannot be
adjusted simultaneously with the lower part of the spec-
trum without consideration of second-neighbor interac-
tions and dynamical charge transfer. ' Neither were
long-range Coulomb forces, responsible for LO-TO split-

tings, considered. However, since the experiment only
shows the acoustic region, it is proper to use the Born
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FIG. 3. Comparison between the theoretical and experimen-
tal results. The vertical scale for the experimental data (from
Ref. 6) has been shifted by k

ku I ~lu
0 IOO 200 300 400

FIG. 2. (a) Vibrational density of states of all interface sites
at k =0. Polarized Raman spectra calculated from the present
theory for (b) back scattering and (c) q =0.

Hamiltonian. The self-similarity properties of this spec-
trum will be thoroughly discussed elsewhere. "

In Fig. 2(b) the result from (2) is plotted for
q=4nn/) c, , proper for backscattering, where the refrac-
tive index n=4. 5 was taken from Colvard et al. ' and
the wavelength of light, XL =5145 A, was taken from the
experiment. It is to be noted that the RS does not con-
tain all the modes, but resembles the incommensurate
"Brillouin zone" folding picture, as though there were
selection rules. Furthermore, the splitting of the acoustic
modes into doublets is remarkable, resembling the split-
ting found in true superlattices, ' where the dispersion
relation should be co-k.

In order to see the exact frequencies of the Raman-
active modes, the RS was calculated at q=0, and is
shown in Fig. 2(c). It should be noticed that the intense
peaks in the acoustic region at frequencies m~ =13.4,

co2 =21.7, co3 =35.0, and co4 =56.7 cm ' follow the
"golden section" ratio, that is co~/co2=co2/co3 co3/co4
=o —= (J5 —I)/2. We observe a deviation of this behav-
ior in co4/co&, where there is a slightly softer mode at
co5 =88.8 cm ', which agrees much better with the ex-
periment. Notice also that the splitting is not exactly
symmetric around each frequency, contrary to the ex-
pected zone-folding effect, and that the behavior of the
optical modes is quite different from that of the acoustic
ones, which resembles the results from theories that
make use of the photoelastic continuum approach, ' as
expected in the limit of long-wavelength excitations.

A close comparison with experimental data is shown in
Fig. 3. The theoretical data are the same as in Fig. 2(b),
except that the thermal factor n+1 for the population of
phonons at room temperature has been included. A
Lorentzian of half-width of 15 cm ', centered at zero,
has been added to the RS. A small imaginary part of
(0.5 cm ') has been added to the frequency. All this
processing is only needed in order to simulate artificially
the experimental conditions. The only parameters of the
theory are the force constants and the refractive index of
the medium, which have been extracted from other
sources, not adjusted to the RS.

In spite of the remarkable agreement between theory
and experiment, there are a few slight differences be-
tween the two spectra. The relative intensities of the
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peaks are not so well reproduced because of effects on

the polarizability tensor not included in the theory, as
discussed above. In the experiment one notices some
Raman-active modes at about 40 cm ', which are not
predicted by the theory. This can be explained by the
fact that the reported experimental RS is not the polar-
ized part, only the (x,x) configuration, and therefore
some of the transverse modes should be present in the ex-
perimental data. ' It should be noticed also that the
spacing between the doublets is not large enough in the
theoretical RS. This is because the value for n was taken
when kL =4579 A, ' smaller than the one used in this
experiment. Thus, one should not be surprised if a
bigger value for n (-5.5) fits better.

In conclusion, a simple theory has been presented and

applied to real Fibonacci heterostructures. This theory
has the virtue, besides its simplicity, of providing a direct
relationship between the microscopic properties of vibra-
tions, at all frequencies, and the coherence effects mea-
sured in the macroscopic sample. Because of the
eSciency of the calculation, this theory is perfectly suit-
able for application to other finite systems, such as real
periodic superlattices. The model can be easily extend-
ed, if needed, to more realistic Hamiltonians, which
could describe the phonons more accurately in all of re-
ciprocal space and in all frequency ranges. Electrons
and other excitations can also be modeled by the present
theory.
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