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Resolution of Causality Violation in the Classical Radiation Reaction
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We show that the usual derivations of the Lorentz-Dirac equation are not valid at points where the
charge’s path is a nonanalytic function of time, and that such points inevitably appear when the applied
force is freely alterable in the future, i.e, when one considers questions of causality. This enables us to
avoid causality violation in classical radiation reaction, making the usual hedge of quantum effects at

small distances quite unnecessary.
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It is widely believed that causality violation occurs in
the classical theory of point charges,'™ and recently its
quantum-field-theory analog has been claimed to exist in
the Compton scattering of light by protons.® In this
Letter we show that, for the classical case, causality
violation has appeared in previous treatments because of
the incorrect use of Taylor expansions for the position of
the charge as a function of time.

Taylor expansions are always used to derive the classi-
cal equation of motion of a point charge, ie., the
Lorentz-Dirac equation.> One usually considers four-
momentum conservation for some narrow (radius e)
world tube enclosing at least part of the charge’s world
line. To calculate the flow of electromagnetic four-
momentum through the surface X of the world tube, one
needs to know the current density for the section of the
world line enclosed by X. So, in order to arrive at a local
differential equation of motion for the charge, the usual
procedure is to expand the path of the charge x“(s) in a
Taylor series about some particular point P, say (where s
is proper time). This then leads to the standard
Lorentz-Dirac equation at the point P,

ma®=F°+ 3e%(a®—a%?), (1)
or simply
X—tx=f (2)

for nonrelativistic motion in one dimension (f=F/m,
t=2e?%/3mc>, e?=q?%/4ney, the metric is —+ + +, and
c=1).

We make some remarks on (2). Its general solution is

x(t) =e(l—b)/‘r

b/t ,
(b)) — —"’—T—j; e "/’f(t')dt’]

for b arbitrary. In general, this is a runaway solution (¥
unbounded for large ¢). Many of the runaway solutions
have the additional fault that the charge accelerates in a
direction opposite to the applied force. This happens, for
example, if one puts ¥ (b) =0. We follow the usual pro-
cedure of requiring the absence of runaway solutions as

an extra condition, i.e., we impose
b/t oo
.. — e —t'/t ' i}
5 (6) = S e @,
making X finite at infinity. Thus we get
. — El/_r it —1t'/t ' '
30 = S e rranar, 3)

the usual so-called ““preaccelerated” (causality violating)
solution, '3 for which the acceleration at time ¢ depends
on the applied force in the future. Since the casuality
violation occurs on an extremely small time scale
(=10 "% s for an electron), (3) is generally considered
to be the most reasonable solution. !~

We note that to derive the Lorentz-Dirac equation at
a proper time s, we must assume that the particle’s path
x%(s) is an analytic function near time s. (Throughout
this paper, “analytic” refers to the real line only, and
simply means that a Taylor expansion is valid.) All valid
derivations known to the author make use of this as-
sumption. There are derivations which need to assume
analyticity over the whole world line, e.g., Dirac’s’ ad-
vanced and retarded field method, which considers a
world tube enclosing the whole world line. However,
there are other derivations which only need to assume
analyticity in some neighborhood of the point in ques-
tion, the size of this neighborhood tending to zero.® It is
evident that if, for some reason, the path of the charge
were nonanalytic at certain points in time, then the usual
derivations of the Lorentz-Dirac equation would no
longer be valid at such points.

Thus we have the result: The usual derivations of the
Lorentz-Dirac equation (2) are only valid at times such
that x(t) and f(t) are analytic functions. Now the cru-
cial point is that, when discussing questions of causality,
nonanalytic points necessarily arise. This is because, in
such discussions, we must assume that we are free to
modify the future externally applied force as we please
(e.g., we typically ask: “If we apply a different force for
times ¢ > 1, is the acceleration of the charge affected for
times ¢ <0?”’). But then the applied force cannot be an
analytic function, in general, because knowledge of such
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a function on an interval automatically fixes the function
everywhere else. Thus at points in time where one is free
to “change one’s mind” about what external force to ap-
ply to the charge, the external force, and hence also the
position of the charge, must, in general, be nonanalytic
functions of time. [If x(¢z) were analytic at such points,
the resulting Lorentz-Dirac equation would clearly con-
tradict the nonanalyticity of f(¢).] Thus we cannot use
Taylor expansions through such points. Using this cru-
cial fact, we can avoid causality violation.

We proceed as follows: At analytic points the
Lorentz-Dirac equation may be derived and then used as
a condition on the motion of the charge. But at nonana-
lytic points no such condition may be derived. Since we,
so far, have no condition on the motion at nonanalytic
points, we are free to impose the condition of causality,
which follows from the underlying causal Maxwell
theory. This leads consistently to a causal bounded solu-
tion.

Consider the following example. A point charge is
acted upon by an external force (per unit mass) f(z) for
times ¢ <o and a force f>(¢t) for t >to. We take f1(¢)
and f>(z) to be distinct analytic functions of time. This
corresponds to a situation where, at ¢t =t(, one is free to
change one’s mind about what force to apply to the
charge le.g., f1(t) =0, f,(z)#0 could correspond to a
charge at rest which is then pushed at some arbitrary
time zo. Evidently ¢ is a nonanalytic point.] It is natu-
ral to assume that, like the applied force, the path of the
charge is analytic at all times except ¢ =t¢. Thus in this
case the Lorentz-Dirac equation (2) is known to be valid
for all 71, but we are given no such condition at ¢ =¢,.

We now solve for the motion in this case. First, given
the analytic function f;(¢) defined only for t <1, let
f1x(¢) be the analytic extension of f1(¢) to all times t.
Now let us imagine that f«(z) were actually applied to
the charge for all t. This would correspond to our actual
physical situation for ¢ <¢( but not for ¢ > ¢o. Equation
(2) with f(¢) replaced by f1x(¢) would then be valid
everywhere, and we would follow the usual procedure
outlined above to arrive at

I/t oo s
x(z)="—r-ft e =t @)

the usual supposedly causality-violating solution. We
stress that (4) would only be valid if the analytic force
Jf1x(t) were actually applied for all time. In that case
we would have no causality violation since we would no
longer be free to “test causality” by altering the applied
force in the future. So far so good. Now (4) was de-
rived by imagining f 14 (t) to be applied for all time, but
in the real situation we wish to consider, it is actually ap-
plied only up to ¢ =t,. However, we can still use (4) to
obtain the actual acceleration for ¢t <o by using the
principle of causality: We can simply say that X for
t <to is unaffected by what goes on at ¢ > ¢, and so (4)
must give the actual acceleration for ¢t <to. For t > ¢y,
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the analytic force f,(¢) is applied, and we again find the
usual solution

$W=—J e~"f2(ar'. (5)
So the actual acceleration is given by (4) for ¢t <t( and
(5) for ¢ > 1. Since t¢ is the only point at which we are
free to alter the applied force, we see that our solution is
perfectly causal.

More generally, we argue as follows: Say we have an
applied force f(z) which is analytic for times in (a,b),
and we wish to find the acceleration X in the interval
(a,b). To do this we first analytically extend f(¢) from
(a,b) to the whole real line, and call the result fi(z).
Then, imagining fx(¢) to act for all times ¢ > a gives us
[since the Lorentz-Dirac equation (2) would then be val-
id for all ¢ > al

l/r oo ,
k’(t)=e7j: e~ f(t)dt'. 6)

Since, in (a,b), the actual applied force is equal to
S+ (1), causality implies that (6) is the actual accelera-
tion for times in (a,b). By assumption of analyticity, we
are not free to alter the force in (a,b), and so (6) indeed
gives us a causal nonrunaway solution in (a,b).

Hence our general result (6) states: the acceleration
depends not on the force which is actually applied in the
Sfuture (which would violate causality), but on the ana-
Iytic extension of the “present” force into the future.

We note in passing that X jumps at nonanalytic points
by an amount

¥l I=enf| 2,

if £ (¢) is discontinuous with all other derivatives [and
also f(¢)] continuous. [While the £ (z) for m > n are
undefined at such a point, we may choose a case where
they are otherwise continuous, so that these removable
point singularities of £ () do not contribute to ¥ | *l
This is perhaps no more peculiar than the usual
Newtonian jump in X for a discontinuous force (same as
our case n=0), noting that our jump in ¥ decreases rap-
idly as n increases (r=10 ~2* s for an electron). How-
ever, it makes it evident that the Lorentz-Dirac equation
is undefined at nonanalytic points, since ¥ and X are
undefined at such points.

We now give two examples of our result (6) in action.
First, consider a charge at rest at the origin for all 1 <0,
with an external force

0 if 1t <0,
SO =10 if t>0,

We take A(z) to be analytic so that ¢ =0 is the only point
at which we are free to choose the applied force. Instead
of the usual “preaccelerated” result

.. =£’/_r g —t'/t ' '
£(1<0) = S e manar,
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we obtain

x(t<0)=0,
l/‘r oo R
#u>0 = [T~ ar.
T t

By the analyticity assumption, A(z) cannot be changed
after ¢ =0, so everything is causal.

As a second example, we use our result to eliminate a
problem raised twelve years ago by Baylis and Huschilt.’
In the situation they examine, we have an electric field
which is constant in some bounded region and zero out-
side it. They find that, according to the Lorentz-Dirac
equation, if a point charge is placed close enough to the
edge of this region, then as well as simply remaining at
rest, the particle can also preaccelerate into the field re-
gion, giving a different possible physical (nonrunaway)
solution. In contrast, our general result (6) leads
uniquely to the “at rest” solution. Thus, resolution of
causality violation seems to simultaneously solve the
problem of multiple (nonunique) physical solutions.

As a final point, we note that the relativistic generali-
zation of our result (6) is evidently

s/t oo ,
#4) = [ Te I3 () — 2 (D5 (D1ds', ()
T s

where x§ (s') and f%(s') are the analytic extensions of
x%(s) and f*(s) from a neighborhood of s to all proper
times s'. This gives us a causal nonrunaway solution for
the relativistic case, the Lorentz-Dirac equation (1) be-
ing defined only at proper times such that x%(s) and
F*(s) are analytic.

We conclude: Since all derivations of the Lorentz-
Dirac equation break down at nonanalytic points, we are
free to impose causality to propagate the solution
through such points. This leads, in a consistent manner,
to a general solution which is both bounded and causal.
It follows that the usual hedge of quantum effects at
small distances is quite unnecessary. In a forthcoming
paper, we examine extended charges in the light of the
above considerations.®
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