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Evolving Geometric Phase and Its Dynamical Manifestation as a Frequency Shift:
An Optical Experiment
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We show that an evolving geometric phase induces a frequency shift. We report an optical experiment
where we employ this eA'ect to off'set the frequency of a laser beam.
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A system (classical or quantum) undergoing periodic
motion has a dynamical phase which is the time integral
of the frequency. If the cyclic evolution takes place in a
slowly varying environment, then there is an additional
nondynamical phase that is associated with the closed
circuit that the system traces in the projective Hilbert
space of states. In a series of papers, Berry' has shown
how this nondynamical phase may be understood geome-
trically in the case of a cyclic adiabatic evolution of pa-
rameters in the system Hamiltonian, with the state of the
system being a discrete nondegenerate eigenstate of the
Hamiltonian. The geometry underlying Berry's phase
was clarified by Simon, who reformulated it in terms of
a line bundle. More recently, Ramaseshan and Nit-
yananda' have pointed out that a phase discovered by
Pancharatnam4 in the context of polarized light may be
interpreted as an early example of Berry's phase.

Anandan and Stodolsky studied Berry's phase for a
collection of states and showed them to be related to the
composition of finite elements in a Lie group. Further,
Aharanov and Anandan6 have liberated the geometric
phase from the restriction to adiabatic evolutions; they
have given a formula in terms of the closed circuit of the
state vector in the projective Hilbert space. In the spe-
cial case of these evolutions being brought about by adia-
batic parameter variations, their results agree with those
of Berry.

We shall be concerned here with a more general ques-
tion: What if the geometric phase itself is evolving?
This can come about, for example, in the following ways:
(1) by repetitive traversals of the circuit in the projective
space, or (2) by continuous deformation of the circuit.
In these cases the result is a phase modulation resulting
generically in a spectral broadening. 7 But in the special
case where the geometric phase P evolves linearly in

time, the constant dP/dt leads to a change in the fre-
quency. In the case where the time evolution of P is
brought about by a continuous deformation of the circuit
it is understood that the time scale that characterizes

this deformation is large compared to the time of traver-
sal of the circuit so that the quasistatic approximation
becomes appropriate and the geometric phase at any
time can be computed with the instantaneous circuit.
We report here an experiment wherein we have observed
such a shift in frequency.

The experiment involves unitary transformations on
the polarization state of a light beam. 3' It will be found
that the generator of the transformations is piecewise
constant, making the evolution nonadiabatic. Thus, the
Aharonov-Anandan framework in terms of a closed cir-
cuit in the projective Hilbert space rather than the pa-
rameter space forms a natural setup for analysis of the
experiment. The dynamical phase is the integral of the
expectation value of the generator of the unitary trans-
formation, while the geometric phase depends only on
the closed circuit in the projective Hilbert space; the to-
tal phase is the sum of these two phases.

The polarization of a plane light wave propagating
along the z direction is defined by a pair of complex
electric-field components E„E»arranged as a column
vector E. The projective space of distinct polarization
states is defined by the ratio E,/E» with the points at
infinity identified, and thus is isomorphic to a sphere S
called the Poincare sphere shown in Fig. 1. The north
and south poles represent right and left circular polariza-
tions and the points in the equatoral plane describe linear
polarizations. Orthogonal states are represented by di-
ametrically opposite points.

We shall be interested in intensity-preserving linear
optical transformations which act on E„,E» by 2X2 uni-
tary matrices constituting the group U(2); they act on
the Poincare sphere by rotations. In particular a
quarter-wave plate acts as a rotation through tt/2 about
an axis in the equatorial plane of the Poincare sphere; if
the slow axis of the quarter-wave plate is along the x
direction, then the rotation on the Poincare sphere is
about OA. A rotation of the quarter-wave plate (about
the z axis normal to the plate) by 8 would rotate this
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FIG. 1. Distinct polarization states are shown on the Poin-
care sphere. The polar points R,L represent right and left cir-
cular polarizations. Linear polarization along x is represented

by A and the orthogonal y polarization by A'. The first

quarter-wave plate produces a z/2 rotation with OM as the

axis, and the second one with ON as the axis.

equatorial axis by 28.
Consider light polarized along the x axis incident on a

quarter-wave plate whose slow axis makes an angle of
x/4 with the x axis. The emergent light which is left cir-
cularly polarized then passes through a second quarter-
wave plate whose slow axis makes an angle of 3x/4+p
with the x axis. The incident light is represented by the
point A on the Poincare sphere, the light emerging from
the first quarter-wave plate by L, and that from the
second quarter-wave plate by the linear polarization
state B. This light falls normally on a plane mirror and
after reflection passes back through the two quarter-
wave plates. The polarization state is transformed from
B to R and then to A. Clearly, the unitary evolution
ALBRA is cyclic for every p. For y-polarized light the
evolution is again cyclic, but given by the reflection of
this circuit through the origin. Clearly, the two circuits
are traversed in opposite senses; and hence subtend equal
and opposite solid angles at the origin. The solid angle
subtended by the circuit ALBRA is 4p. Since these are
SU(2) transformations the Berry phase is half the solid

angle. Thus x and y polarizations develop Berry phases
of +2p and —2p under this sequence of transforma-
tion s.

Now, if the second quarter-wave plate is rotated uni-

formly with an angular velocity 0 =dp/dt, the segment
RAL of the circuit remains unaltered under this rotation,
whereas the segment LBR describing the action of the
second quarter-wave plate rotates about the axis RL with

an angular velocity 20. Hence, the geometric phase
changes linearly in time, p(t) =p(0)+ 20t, where the
upper and lower signs are for x and y polarizations re-
spectively, and therefore contributes a shift in frequency.

FIG. 2. Experimental arrangement for the generation of a
tine-varying geometric phase. The basic configuration is that
of a Michelson interferometer, with the light from arm m2

serving as a reference beam for the detection of phase changes
generated in arm ml. QWP1 is a quarter-wave plate with its
slow axis fixed at 81 -x/4. The slow axis of quarter-wave plate
QWP2 is slowly rotated about the propagation direction with

angular velocity 0 =d82/dt =dp/dt The i.ncident beam is
linearly polarized along x or y.

If the input light was of frequency co, the output light
(after making the round trip) will have frequency
co'=co F20, where we note that a positive geometric
phase corresponds to a phase retardation and the minus
(plus) sign is for x (y) polarization. In evaluating this
evolving geometric phase p(t), we assume that 0 ' is

very large compared to the time of transversal of the cir-
cuit so that p(t) is related to the solid angle subtended

by the instantaneous circuit.
The experimental arrangement that we have employed

to observe this frequency shift is illustrated in Fig. 2.
The apparatus is a Michelson interferometer with a
time-varying phase shift generated in one arm (mi) by
quarter-wave plates QWPl and QWP2 in double pass
precisely as in the previous discussion. The slow axis of
QWP1 is fixed at angle 81 =z/4 relative to the x axis
while that of QWP2 is specified by an angle 82. QWP2
is rotated about the z axis with an approximately con-
stant angular velocity 0=d82/dt. Apart from a con-
stant onset, 82 is just p as illustrated in Fig. 1. The
second arm of the interferometer (m2) provides a refer-
ence beam against which phase changes due to the rota-
tion can be measured. The orientation of the axis of the
linear polarization state of the input field is controlled
with half-wave plate HWPl. The input beam is from a
single-frequency helium-neon laser operating at A, =633
nm.

One of the most important aspects of any experiment
dealing with topological phase is the need to ensure that
the dynamical phase remains constant while the parame-
ters that lead to the topological phase are changed, so
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=aI;„[1+vcos(yp+20t)].
This simple prediction of a phase retardation y which

is linearly increasing at twice the rotation rate is con-
firmed by the measurements shown in Figs. 3 and 4.
From Fig. 3 we see that the quantity I,„&exhibits a sim-

ple sinusoidal dependence (apart from the jitter associat-
ed with the unfortunate mechanical instability of the in-

terferometer) as a function of time or of rotation angle
82. The change htlt=hp =2tr is accomplished by a phys-
ical rotation of QWP2 of 682=5&=tr, as expected.
That the phase difference alt is linearly increasing in time
is a refiection of a frequency shift between the two fields

emerging from the arms of the interferometer. From
Fourier analysis of time series such as that in Fig. 3, we

can obtain the frequency shift Aco as a function of rota-
tion rate 0, as shown in Fig. 4. The relation

~
hco

~
=211

is well confirmed by the data in this figure, which are
taken for incident polarizations along both x and y and
for angles 81=tr/4 and 3tr/4. That the signs of the
respective phase changes and frequency shifts are in

agreement with our analysis is confirmed by our scan-
ning m1 to produce either a phase advance or retardation
for the m1 arm relative to the m2 arm. We have also
generated frequency shifts of 40 between two orthogo-
nally polarized beams emerging from BS1 by injecting a
single beam polarized along the optic axis of QWP1.

In summary, we have in this Letter explored and

verified a new kind of effect: In addition to the frequen-
cy's inducing a dynamical phase, the evolving non-

dynamical geometric phase induces a frequency shift.
Since 0, the angular frequency of the second compensa-
tor, can be varied in a controlled manner, it follows that
our arrangement employs Berry's phase to give a method
for fine tuning of the frequency of a laser beam. In fact
this method has been previously demonstrated in a
different context for the generation of single-sideband
carrier modulation. The cycle of transformations of
Fig. 1 involving the polarization state is a sequence of
SU(2) transformations; therefore, the Berry phase is

half the solid angle subtended by the closed circuit at the
origin, even though the photon has unit "spin. " The
Tomita and Chiao experiment'o involved a sequence of
SO(3) transformations on the propagation direction with

fixed polarization (helicity); hence, in contrast, a Berry's
phase equal to the solid angle was obtained.

The polarization of plane waves and their transforma-
tion by quarter-wave plates are conventionally well de-
scribed in classical terms; this is the perspective that we

have adopted in this Letter. An earlier optical experi-

ment' related to Berry's phase has generated a lively
discussion as to whether the effect is classical or quan-
tum mechanical. " From the work of Berry' and of
Anandan and Stodolsky it is clear that the Berry phase
depends upon the sequence of unitary transfortnations,
which manifest themselves as mode transformations in

the quantum-field-theoretic description. Since in all op-
tical experiments reported thus far, manifestations of the
Berry phase are measured via the mutual coherence
function, the classical and quantum treatments must give
identical results, as demanded by the first fundamental
theorem of quantum optics. '2
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