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Quantum Distinction of Regular and Chaotic Dissipative Motion
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We generalize the concept of level spacings to dissipative quantum maps. For periodically kicked tops
with damping, we find linear and cubic level repulsions under conditions of classically regular and chaot-
ic motion, respectively. The numerically obtained spacing distribution for the chaotic top appears to be
universal: It compares favorably with the spacing distribution of general complex matrices of large di-
mension, the analytical form of which we also present.

PACS numbers: 05.45.+b

The classical distinction between regular and chaotic
motion, based on the concept of Lyapunov exponents, is
well known to become meaningless when quantum effects
are important. For Hamiltonian systems, however,
several intrinsically quantum-mechanical criteria have
been established which allow us to distinguish between
two types of quantum motion, one going regular and the
other chaotic as A. 0. Some of these quantum criteria
refer to the spectrum of energy or quasienergy levels
(level clustering versus level repulsion' ), others refer to
the temporal behavior of expectation values of typical
observables (nearly regular versus erratic quasiperiodici-
ty ), and yet others refer to the structure of energy or
quasienergy eigenfunctions. Such genuine quantum dis-
tinctions are complementary to the classical ones
inasmuch as they tend to loose their meaning as 6 0.

For dissipative systems, on the other hand, exclusively
quantum-mechanical differences between what becomes
regular and chaotic classically are much more elusive
than for Hamiltonian ones. The classical difference be-
tween, say, a complicated limit cycle and a strange at-
tractor is visible when phase-space structures are con-
sidered over several orders of magnitude of action scales.
The density matrix (or one of its representatives like,
e.g. , the Wigner function) reflects such structures on ac-
tion scales upward of Planck's constant and may thus tell
the difference between a strange and a simple attractor
with reasonable certainty. But for the density matrix p

to reveal that the difference in terms of concepts ex-
clusive with quantum mechanics it would have to em-

body coherences (y i p i p) with respect to states i y) and

i p) distinct on action scales large compared to h. In the
presence of even weak damping, such coherences tend to
decay so rapidly that their observation becomes difficult
if not impossible. In fact, when the damping rate for
probabilities like &yi pi y& and &pi pi p& is I, the decay
constant of the coherence (pi p i p) tends to be larger by
a factor of the order of the action scales inherent in i y)
and iy&.

The phenomenon in question is of rather general char-
acter. Roughly speaking, dissipative quantum systems
tend to go classical more easily than Hamiltonian ones.
An illustration of relevance to ongoing research are the
difficulty and the impossibility of observing quantum
tunneling between states which are, respectively, meso-
scopically and macroscopically distinct. The effectively
instantaneous decay of coherences between macroscopi-
cally distinct states of measuring devices is another illus-
tration important for the quantum theory of measure-
ment; the drastic effects of weak dissipation on re-
currence events, both of the regular and the erratic
variety, in quantum systems with discrete spectra have
also been noted previously.

The foregoing remarks are not meant to imply that the
semiclassical behavior of classically chaotic systems with

damping is not interesting. Quite the contrary, the gra-
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dual unfolding of a strange attractor as ltt is decreased is

an impressive phenomenon quite different from the ap-
proach to classically chaotic behavior in Hamiltonian
systems. It is well to be aware of an important obstacle,
though, when setting out to search for genuine quantum
signatures of two types of dissipative quantum dynamics
complementary to the well-known classical difference be-
tween simple and strange attractors.

We now discuss a quantum distinction found in the
numerical treatment of a damped kicked top capable of
both dominantly regular and globally chaotic behaviors
in the classical limit. The criterion in question is based
on the generalization of quasienergies p to complex "lev-
els" p-p'+i&". To appreciate the meaning of these
complex p it is crucial to realize that dissipative dynam-
ics must be described in terms of a density matrix. Con-
sequently, for an N-dimensional Hilbert space there are
N such p.

In the zero-damping limit the then real p do not
reduce to quasienergies, i.e., to eigenphases of the then
unitary Floquet operator. Rather, the p become the
difference of two quasienergies each N of which vanish
while the remaining ones fall into N(N —I)/2 pairs
+

i p i. Only N of these pairs refer to adjacent quasien-

ergy levels, i.e., give nearest-neighbor spacings.
For the weakest of dampings, each p' can still be asso-

ciated with a pair of quasienergy levels and the corre-
sponding imaginary part p" with a width. As long as the
N nearest-neighbor spacings p' are larger than the width
p" there is no noticeable deviation of the spacing distri-
bution from the zero-damping form. Especially, the dis-
tinction between clustering and repulsion of quasiener-
gies is still possible.

However, when the damping is increased such that the
width p" exceeds the zero-damping spacing, the original
concept of neighboring levels breaks down. A possible
extension of the notion of a spacing is the Euclidean dis-
tance between the complex levels in the complex plane.
We have found the distribution of smallest distances to
display linear and cubic repulsions under the conditions
of classically regular and chaotic motion, respectively.
Linear repulsion, incidentally, is a rigorous property of
the Poissonian random processes in the plane. Cubic
repulsion, on the other hand, is typical of the non-
Hermitian random matrices.

For the system we have investigated the density opera-
tor p(t) obeys a master equation of the form

p(r) =Ap(r) —i[H(r), p(&)1=—[A —iL(r)]p(r), (1)

A kick-to-kick stroboscopic description,

A —iLP —iL1
pn+ f =e e pn =Dpn ~ (3)

Ho pJz+koJzl2j, Hi=kiJyl2j,

with coupling constants p, ko, and ki. The damping gen-

—.5

is therefore convenient with the index n a discrete time
counting the number of kicks passed. The complex levels

p discussed above are the logarithms of the eigenvalues
of the dissipative quantum maps (3), defined by
Dp e '~p where p denotes an "eigenvector. " In an N-
dimensional Hilbert space, the eigenvectors p as well as
the density matrices p„are N by N while the discrete-
time propagator D is an NxNxNxN tetrad. Important
restrictions on D are the conservation of (i) probability
(trDp„ trp„), (ii) Hermiticity (p„=p„+),and (iii) posi-
tivity (p„&0). It follows that each level p is accom-
panied by its negative complex conjugate —

p as anoth-
er one. The eigenvalue unity, i.e., p 0, arises for a sta-
tionary solution, Dp=p. We are interested in stable
maps only for which all eigenvalues are smaller than or
at most equal to unity in modulus. In a complex plane,
the N eigenvalues thus live on a circular disk of unit ra-
dius, centered at the origin. Confined to the boundary of
that disk in the nondissipative limit they wander inwards
as the damping is increased (see Fig. 1); only exceptional
ones like the one pertaining to the stationary solution of
(3) remain on the circumference.

More specifically, we have worked with kicked spins
3 (J,J~,J, ) of conserved square, J =j(j+1), j&&1.
The dimension of the Hilbert space is thus N=2j+1.
The Hamiltonian part of the dynamics was chosen simi-

larly as in previous work ' '

H(r)=H, +H, g b(r n). — (2)

where A is a generator of infinitesimal time translation
by damping and H(t) is a Hamiltonian periodically
modulated in time by impulsive kicks,

O. ~5 1. Re e'

FIG. 1. Position of the complex eigenvalues of the propaga-
tor D [Eq. (3)] (j 6, p 2, k| g, ko 10, even parity) for
different values of the damping constant I . (I =0 to 0.4 in

steps of AI 0.005. )
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erator A was chosen as

Ap =(I /2j) [[J—,pJpl+ [J—p, J+]], (s)

i(S)
1.0

~ 8-

.6—

~
4-

with J+ =J„~iJ~ as is well known from the theory of
superfluorescence. Taken by itself, A would describe
the relaxation of p(t) towards the state of minimal J, on
the time scale 1/I. The dynamics [(3), (4), and (5)]
correspond to a classically nonintegrable motion if k ~ a0.
For all coupling constants p, ko, k~, and I smaller than
unity, however, the classical sphere J const is dom-
inated by regular motion. For sufficiently strong non-

linearities, there is global chaos corresponding, for I &0,
to a strange attractor. We shall now be concerned with
a quantum analog of the classical transition from regular
to chaotic motion when k ~ is increased from zero to
sufficiently large values.

Our results for the eigenvalues of D are illustrated in

Figs. 1 and 2. The diagonalization of D was carried out
for j 10 so that D was 21 x 21 x 21 x 21. (Actually, be-
cause of a parity D breaks up into two blocks of about
equal size. ) Figure 1, as already mentioned, displays the
inward migration of the N complex levels from the cir-
cumference of the unit circle with increasing damping.
In order to obtain meaningful spacing distributions for
fixed coupling constants, the coordinate mesh within the
unit circle was rescaled so as to obtain a uniform distri-
bution of points exp( ip) —Figu.re 2 depicts, under the
label "regular, " the integrated spacing distribution for
the classically integrable case k~ 0; the damping con-
stant was set to I 0.1 and the linear precession parame-
ter to p 2; to smooth the staircase, 100 different values
of ko between 10 and 12 were chosen and the corre-
sponding distributions thrown together. The behavior
shown here for k ~ 0 actually prevails for nonzero

values of k~, k~ ~0.2; in that range of k~ all classical
trajectories quickly approach a fixed point. The second
line in the "regular" pair represents the asymptotic
(N ~) result for a Poissonian random process in the
plane,

(6)

Interestingly, the so-called Wigner distribution (6) was

previously known to hold rigorously for the Gaussian or-
thogonal ensemble of real symmetric (2X2) matrices;
here it arises in a different context as rigorous in the lim-

it N . At any rate, linear repulsion of the complex
levels in this integrable case is obvious and the agree-
ment between the results for the Poissonian random pro-
cess and the map D is quite satisfactory.

One of the two curves labeled "chaotic" in Fig. 2 was

obtained under conditions identical to those of the in-

tegrable case, except that k ~ 8 was chosen to make the
classical motion strongly chaotic. The other line in that
pair corresponds to a general complex random matrix of
similar dimension with Gaussian statistics. Cubic repul-
sion can be inferred as well as impressive agreement in

the behaviors of the map D and the random matrix. The
latter agreement might at first sight be astonishing since
the general random matrix does not respect any of the
restrictions the map D must obey; in the limit of large di-
mension the latter restrictions seem not to affect the lo-

cal fluctuations in the complex spectrum.
Figure 2 suggests that general complex random ma-

trices are of relevance for the chaotic case. We have
therefore taken Ginibre's ' joint probability of the ei-
genvalues of such matrices and calculated the corre-
sponding spacing distribution in the limit N ~. We
choose units such that the N eigenvalues tend to cover,
with uniform mean density, a circle around the origin of
radius MN in the complex plane. " We define p(s)ds
as the probability that the distance of a randomly chosen
eigenvalue to its nearest neighbor lies in the interval

(s,s +ds ) and derive p (s ) from its integral as
p(s) di(s)/ds. In fact, it can be shown that 1 —i(s),
i.e., the probability that a randomly chosen eigenvalue
has all its neighbors further away than s, takes the form
of a product,

0 .2 ~ 6 1.0 1.4 1.8 S

&-~ n-1

e„(x) 1+x/1!+x /2!+ . . +x"/n! .
(7)

FIG. 2. Integrated spacing distributions 1(S) for two
different universality classes. In each of the two pairs one
curve refers to our map D with j 10, I 0.1, and p 2, and
100 different values of ko between 10 and 12; the "regular"
case pertains to k [ 0 and the "chaotic" one to k[ 8. The
second line in the "regular" pair represents the integrated
Wigner distribution (6) and in the "chaotic" pair the spacing
staircase of general non-Hermitian matrices of like dimension.

Interestingly, if the limit N~ ~ in (7) is not taken, the
finite product is the conditional probability that if one ei-
genvalue lies at the origin, all N —1 others are further
away than s. It is only for N that full homogeneity
arises within the circle in question and that p(s) be-
comes independent of the reference point.

We were pleased to realize that the infinite product in

(7) converges quite rapidly and is easy to cotnpute. Im-
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FIG. 3. The integrated spacing distribution for general com-

plex random matrices for matrices with N~2 [see (10)], 10,
50, 400, and ~ [see (7)]. Inset: Common cubic level repulsion

for small spacings with logarithmic axes.

s4—In[1 —i(s)] = +s'[lns+O(1)].
4

(9)

To compare with the numerical data, we have rescaled as
I(S) i(Ss) where s jn ds[1 —i(s)] =1.142929. . . ,
S 1. Figure 3 shows the numerically obtained spacing
distributions for random matrices of dimensions 10, 50,
and 400. We also show the integral of the spacing densi-

ty for X 2,

P(S) -(3'tr'2 ')S'e (10)

as well as the asymptotic result corresponding to Eq. (7).
The N dependence of these distributions is rather more
strongly pronounced than in the well-known cases of
Hermitian and unitary matrices. The reason is a bound-
ary effect. If we discard eigenvalues too close to the cir-
cumference of the circle, excellent agreement with the
asymptotic result is reached for N & 20.

We would like to conclude with a question concerning
universality classes of dissipative systems: Are there,
beyond the ones with linear and cubic repulsions, other
classes? To check on the possibility of quadratic repul-
sion we have set kn =0 in (4) and looked at the underly-

mediately accessible is the behavior for small s,

s s s 11i(s) = — + — s' +O(s' ) .
2 6 24 120

Somewhat more delicate is the asymptotic large-s behav-
ior. By using the Euler-MacLaurin summation formu-
la, ' we find

ing Hamiltonian dynamics of the top coupled to a heat
bath which yields the damped motion (3) upon elimina-
tion of the heat bath. The Hamiltonian dynamics in
question has a unitary Floquet operator with, because of
k0=0, a tine-reversal symmetry and thus linear repul-
sion of its quasienergies. As we have checked numerical-
ly, however, the complex levels of the dissipative map (3)
maintain their cubic repulsion even for k0=0. Further
investigations for different model systems will be neces-
sary to establish a definitive answer to the question
touched upon here. Of special interest are autonomous
dissipative systems since these are known to have or not
to have detailed balance depending on whether or not the
underlying microscopic dynamics has a time-reversal in-
variance. '
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