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Band Inversion in Gel Electrophoresis of DNA
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Band-inversion phenomena, found in a recent computer simulation and a real experiment of steady-
state gel electrophoresis, is theoretically analyzed by a simple model that describes the conformational
change of DNA reptating through a gel. The model predicts the distribution function of the end-to-end
vector and the steady-state mobility, which agrees quite well with the result of a computer simulation
without the use of any adjustable parameters.

PACS numbers: 87.15.He, 82.45.+z, 82.70.Gg

Gel electrophoresis is widely used to separate DNA
fragments with different molecular weight. If the molec-
ular weight of DNA is low, or if the electric field E is

sufficiently small, the migration velocity VG of DNA is

proportional to the applied electric field, and the mobility

p = VG/E decreases with the molecular weight M accord-
ing to p ~ I/~. This behavior has been interpreted' by
the reptation model. However, for high molecular
weights or for strong electric fields, a nonlinear behavior
is observed: The mobility increases with the electric
field, and becomes rather insensitive to the molecular
weight.

Lumpkin, Dejardin, and Zimm (LDZ) gave a first

theory for such nonlinear behavior. Assuming that DNA
moves towards the field, with its head segments (the seg-
ments pointing to the field) being aligned by the field,

they predicted that the mobility inonotonically decreases
with the increase of M according to

1 =C, (E)/m+C2(E),

where Ct and C2 are positive constants which depend on

the magnitude of the applied field.
Noolandi and co-workers formulated this idea into

a mathematical model which they call the biased repta-
tion model. By computer simulation, they found a rather
unexpected result: With the increase of M, the mobility
first decreases but then starts to increase again before it
approaches the limiting value. In the actual experiments
of gel electrophoresis, this means that the band moving
faster does not always correspond to smaller DNA: It
may be a band of larger DNA. Noolandi et al. showed

that this band inversion phenomena is indeed observed
experimentally.

A phenomenological explanation for the band inver-

sion was given by Noolandi et al. They noticed that al-
though the DNA in their computer simulation migrates

through gels mostly in an elongated conformation, it oc-
casionally takes a compact conformation which has small
end-to-end vectors. Once it takes a compact conforma-
tion, it is trapped in the conformation for a long time,
during which it moves quite slowly. The band inversion
occurs since very long chains take compact conformation
rarely, thus moving faster than the chains with inter-
mediate lengths.

In this paper we shall give a quantitative theory for
the band inversion. We shall take the biased reptation
model as the model of DNA motion. This model does
not account for certain aspects of DNA motion such as
contour length fiuctuation and tube leakage, which, as it
was pointed out by Deutsch, ' might become important
for strong electric field or for very large DNA molecules.
However, for a certain range of experimental conditions
that is discussed in Ref. 6, the use of the reptation model
would be justified at least in the first approximation.

Starting from the model formulated by Noolandi et
al. , we shall derive a simple equation which approxi-
mately describes the time evolution of chain conforma-
tion. Though the theory is simple, it can reproduce the
result of the computer simulation quite well without us-

ing any adjustable parameters.
In the biased reptation model, it is assumed that the

chain is made up of N segments of length a (the average
pore size), and can move only along its own contour. If
there is an electric Geld E in the x direction, the chain
moves along itself with the mean curvilinear velocity

U t =QEh„/Lg,

where Q is the total charge of the chain, h„ is the x com-
ponent of the end-to-end vector h, L=Na is the total
contour length, and ( is the friction constant of the chain
(gtx:M). The average velocity is superimposed on the
Brownian motion of the chain which is characterized by
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VG„=(h„vt)/L . (3)

the curvillinear diffusion constant Dt =kaT/g.
The average velocity of the center of mass is related to

the curvillinear velocity by

(9) represents statistical fiuctuations of the vectors which
have been created or destroyed in the time interval At:
AR(t) is a Gaussian stochastic variable characterized by
the moments

Thus the mobility p = VG, /F. is given by

p =Q( h„' &/L'& = 3po(h„')/L', (4)

(AR(t)) =0,

0, if ~t —t'~ &at,
(aR(t)aR(t')) = ', (8)~ .f

~

t,
~
(~

(10)

~here po=Q/3g is a segmental reptation mobility, which
is independent of molecular weight.

Equation (4) indicates that the nonlinear behavior of
the mobility is caused by the change of (h„) by the elec-
tric field. If the field is very weak, (h„) is equal to the
equilibrium value Na /3, so that pcx'1/N~ I/M. With
the increase of the field, (h„) increases, and so does the
mobility. Thus we shall now consider how h, changes
with time.

As the chain moves along the tube, the head segment
leaves the tube and creates new tube segments. The
biased reptation model assumes that the new tube seg-
ments are aligned toward the field: The distribution of
the unit vector u a long the new segment is given by

The second moment of ER(t) is determined by the fact
that the mean square end-to-end vector of the new tube
segments is (aPhn) +a Qhn

Equation (9), supplemented by Eqs. (8) and (10) is a
stochastic difference equation. Unfortunately, this equa-
tion becomes invalid for weak electric fields where the
effect of Brownian motion becomes important. Particu-
larly, it fails completely for zero field: If E =0, An and
ttR(t) are identically zero according to Eqs. (8) and
(10), so that h„(t) does not change with time. To re-
move this failure, we shall modify Eq. (8).

It is known that for F. =0, the time evolution of h„(t)
is approximately described by the stochastic equation

P(u ) ~ exp u„=exp(8u, ),aE
2NkBT

(s)
h„(t )

h„(t+At) —h (t) = — " at+AR(t),
&rep

where 8=QaE/2NkaT is the scaled electric field. From
Eq. (5), it follows that

where ~„~ is the reptation time:

zpep gN a /z kaT ~ (i2)

and

(u, ) =coth(8) —1/8=P(e)

(u ') —(u„)' =1/8' —1/sinh'(8) —=Q(e) .

We modify Eq. (8) such that Eq. (9) reduces to Eq. (11)
in the case of E =0. A simple choice is

dn =(3pph»E/L+N/z„~)ht

We shall now set up an approximate equation which
describes the time evolution of h (t). First we consider
the case of strong electric field and disregard the effect
of Brownian motion. In a time interval At, the chain
moves the distance veldt along the tube, so that the head
creates hn=v~ht/a tube segments:

v ]At h»
An = =3@0 EAt .

a L

Thus the change of h„(t) may be written as

h„(t+At) —h„(t)

=aP(e)hn —[h„(t)/N]hn+ hR (t ) . (9)

The first term on the right-hand side is the mean end-
to-end vector of the new tube segments created by the
head. The second term represents the mean end-to-end
vector of the segments which have disappeared in the
time interval ht. [Here we have assumed that if the
end-to-end vector of a chain is h, the mean end-to-end
vector of a segment is h/N. This approximation will be
good as far as the orientational distribution of segments
is homogeneous along the chain. ] The last term in Eq.

= z,„'[( /2n) Nhe/ »a+I]~t. (13)

Obviously there are other choices, but the essential
feature of our conclusion [such as Eq. (1)] is insensitive
to the actual form of An.

Equations (7), (10), and (13) are the stochastic equa-
tions which approximately describe the time evolution of
h„(t) under an arbitrary electric field. The equations
can be rewritten in a standard form of stochastic
difference equation:

h„(t+ht) =h„(t)+gAt+a''t'ar(t),

where

(14)

g(h„)= aP(e) — ' ", a=a'Q(e), (iS)
At

and r(t) is a Gaussian random number satisfying

(Ar(t)& =0,

0, if ~t t'~ &st, —
(ar(t)wr(t'))='2, f ( ( (~,2, sf]t

It is known that if h, (t) obeys the stochastic equation
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(h) 'g( ) (2/~')Ne
I h„/a+1],
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aU i a~
ah,

= g ah X

—[2Na Q(e)] '
hIh, I

—N~P(H)]', (20)
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trary electric field. (Generalization of the equation for a
three-dimensional field is trivial. ) It works quite well for
a steady field. However, perhaps a more interesting ap-
plication of the equation can be found in the case of an
alternating field, which has now become technologically
quite important. Research toward this direction is now
in progress.

10'

FIG. 3. Minimum mobility p*/po and the corresponding
value of N* at the minimum is plotted against 8. Circles
denote the value obtained by a computer simulation. Solid
lines are the result of the present theory.

The band inversion takes place if N exceeds this value.
We have proposed an approximate kinetic equation

[Eq. (17)] for the distribution function of the end-to-end
vector. The equation, together with Eq. (4), can predict
the nonlinear behavior of gel electrophoresis for arbi-
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