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Superconducting Gap Anisotropy Caused by a Spin-Density Wave
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The Bardeen-Cooper-Schrieffer gap equation for h(k) is solved analytically for a simple metal having
a spiral or linear spin-density wave. d falls to zero at the spin-density-wave energy gap for the spiral
case, but falls to a finite (but small) value if the spin-density wave is linearly polarized. The electronic
heat capacity in the superconducting state acquires a low-temperature tail, far in excess of a BCS ex-
ponential falloff; and similar to the (hitherto enigmatic) behavior observed in pure Pb.

PACS numbers: 74.20.Fg, 74.30.Ek, 75.30.Fv

Twenty-five years ago Keesom and van der Hoeven '

discovered that the electronic heat capacity in the super-
conducting state of pure Pb exhibits an unexpected low-

temperature tail, as shown in Fig. 1. In recent years
similar behavior was found in several heavy fermion sys-
tems, and data for UBei3 are included for comparison.
Some have argued that such a dependence is indicative
of exotic pairing (e.g. , spin triplet, as in He). However,
Pb is a paradigm of s-wave, spin-singlet superconductivi-
ty. Analysis of the Pb data was interpreted in terms of
an extremely anisotropic energy gap (6,„/5;„-4),and
the disappearance of the anomalous tail for Pb-Inoos
supports this conclusion (since scattering reduces gap an-
isotropy). Theoretical study of the gap equation, exploit-
ing the known phonon spectrum and Fermi surface of
Pb, does not allow a gap anisotropy much larger than ten
percent. In this paper we propose a surprising solution
to this important and long-standing puzzle.

The possibility that a free-electron metal could have
a spiral or linear spin-density wave (SDW) has not been
pursued. (The SDW ground state in the d band of Cr
is firmly established. It is well known that supercon-

IO

ductivity and antiferromagnetism are compatible. We
shall assume here that the SDW is a high-temperature
phenomenon, and that its energy gap, 2G (G» t), ), is
constant at low temperature (unlike models relevant to
Chevrel compounds).

We will demonstrate that the anisotropic gap equation
for h(k), within the framework of Bardeen-Cooper-
Schrieffer (BCS) theory, can be solved analytically.
Consider first the spiral SDW case. The one-electron
Hamiltonian can be

cosgl, e'"'a+ sing|, e' "+ 'p,
where a and P are Pauli spinors. The coeScients are

sin8|, =[(h k /2m) —eqllD,

cos8q =G/D,

(2)

(3)

(4)

with D=[G +(el, —52k /2m) ]'I2. The energy eigen-
value is

H =(p'/2m) —G(o„cosQz+ cry sinQz),

where jo;] are the Pauli matrices and Q=2kFz. The
exact wave function for a (mostly) spin-up state is, for
k, & —kF,
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FIG. l. Electronic heat capacity in the superconducting
state for Pb and UBe[3. The dashed line is the behavior ex-
pected from BCS theory with small (or no) gap anisotropy.

+ (4mG/ ft ') '] ' 'j . (5)

The "spin-up" Fermi surface is shown in Fig. 2(a) and is
flattened by an energy gap, 2G, at k, = —Q/2.

The state pl, l, Eq. (2), will be paired with its degen
crate partner

l, t =cosgl, e '"'p+ sing|, e '"+~}'a,

which is, however, not the time reverse of (2). The
"spin-down" Fermi surface, not shown in Fig. 2(a), is
flattened by an energy gap k, =Q/2. For every point,
r, (2) and (6) have opposite z cotnponents of spin, but
have parallel x and y components.

In the BCS approximation the matrix element Vgl„of
the phonon-mediated interaction between plane-wave
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FIG. 2. (a) Fermi surface for the spin-up electrons of a
metal having a spiral SDW. (b) Anisotropy of the supercon-
ducting gap parameter, tt(k, ), for a spiral SDW. g is the (di-
mensionless) SDW-gap parameter, Eq. (9).

pairs (k f, —k) ) and (k' f, —k') ) is taken as a constant,
V. We adopt this simplification for "plane-wave" contri-
butions. However, the matrix element of the pairing
Hamiltonian for the SDW pairs, (2) and (6), is

Vkl, = Vcos(28l, )cos(28l, ) . (7)

Obtaining Eq. (7) is straightforward provided one ob-
serves that the virtual-scattering element now has an ex-
change term (as well as a direct one) on account of the
spin admixtures in (2) and (6). The remarkable fact
that Vl, l, appears in factorized form means that the gap
equation can be solved analytically. ' The result is im-
mediate:

kaT, =1.14htoD exp( —1/A, ,ff), (io)

h(k, T) =hp(T)cos(28l, ) .

Since 8l, 45' at the SDW energy gap, which can be
seen from Eq. (4), d, vanishes at the SDW gap. The
Fermi-surface neck, shown in Fig. 2(a), has (in general)
a finite circumference; so a spiral SDW produces a line
of nodes on the Fermi surface. Such a feature automati-
cally leads to a low-temperature, power-law tail in the
heat capacity.

To illustrate the infiuence of the gap anisotropy, Eq.
(8), on thermodynamic properties we define a dimension-
less SDW-gap parameter:

g=—2mG/tl Q =G/4EF .

g/Ap is shown in Fig. 2(b) for several values of g. (~p
varies with T in a way similar to the isotropic 6 of BCS
theory. ) Although the anisotropy of 6 is enormous, it is
confined to a small fraction of the Fermi surface near the
SDW gap. In the weak coupling limit the equation for
T, can be solved exactly. One finds a BCS-type result:
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FIG. 3. g dependence of ir,,rr and T, (from McMillan's equa-
tion with X =0.4, u* =0.1). rlhp is the superconducting gap
parameter at the (linear) SDW gap. (rt=0 for the spiral
case. )

the only difference being that k is replaced by

ff=k [1 —g arctan (1/g) ]

It is interesting to substitute A.,g for A, in McMillan's for-
mula" for T,. Figure 3 shows X,g and T, vs g. Super-
conductivity is quenched by a large SDW gap. This
effect has been envisioned' for Li, which is not super-
conducting, but which should (otherwise) have T, -2 K.

The electronic heat capacity C„(T) can be obtained
by numerical evaluation of'

2
Ces glrflr(1 —fir) (elr —EF) +d —Td

0=(p'/2m) —2Ga, cosQz . (i3)
For small G the solutions may be approximated as a
linear combination of two plane waves. ' For —

2 Q
&k, (0,

yl, t = (cos8l,e'"'+ sin8l, e' "+ ')a,
pl, = (sin8l, e'"' —cos8l,e't"+~")p,

(i4)

(is)
where sin8l, and cos8l, are the same as in Eqs. (3) and
(4). The solutions for 0 & k, & —,

'
Q mix

~
k) and

(i2)

fl, is, of course, the Fermi-Dirac function. C„(T) is
shown in Fig. 4 for three values of g. The asymptotic be-
havior of each tail is —T .

The theory for a linear SDW is more complicated, so
we shall quote the results from a detailed study. ' The
one-electron Hamiltonian can now be
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FIG. 4. Electronic heat capacity in the superconducting

state vs T,/T for a spiral SDW.
FIG. 5. Electronic heat capacity in the superconducting

state vs T,/T for a linear SDW.

d (k, T) =ho(T) [cos(28|,)+ rl sin(28')],

where rl is independent of T:

ti =u/2[(it, s/X) —v],

(i7)

where u =gin[1+ (1/4g )], v =garctan(1/2g), g is still
defined by Eq. (9), and

it, tr/k = —,
' [1 —v+ [(1—3v ) '+ 2u '] ' ] . (i9)

The variations of X,g, T„and ti (with g) for the linear
SDW case are shown by the dashed curves in Fig. 3.

Finally, we have calculated C„ from Eq. (12), and the
results are displayed in Fig. 5. The second term of Eq.
(17) prevents 6 from falling to zero at k, = ~ —,

'
Q, the

linear SDW gaps, but h, does fall to a small value, @ho,
shown in Fig. 3. In the low-T limit, C„reverts to an ex-
ponential falloA; but to one having a much smaller slope

~
k —Q). The virtual-scattering matrix element, taking a

pair from (peal, p ql) to (pl, l, p —l, l) is now more compli-
cated than Eq. (7), even though there is no longer an ex-
change term:

Vql, =V[cos(28')cos(28|, )+ —,
' sin(28|, )sin(28')]. (16)

We have again embraced the BCS constant-V approxi-
mation for plane-wave contributions. The origin of the
complexity in (16) is the fact that each coupling can
occur through virtual emission of phonons q, q+Q, and

q
—Q
The Markowitz-Kadanoff theory' can no longer be

used because Vl,q does not have a factorized form. How-

ever, the BCS gap equation with (16) for the kernel can
still be solved exactly. After considerable work, we

found

than ideal BCS behavior.
The foregoing theory shows that a heat-capacity tail

similar to that observed in Pb can be caused by the pres-
ence of SDW's. Since an alternative explanation has not
been forthcoming despite the challenge lasting one-
quarter of a century, we propose that Pb may have a cu-
bic family of small-amplitude, linear SDW's: e.g. , Q's
along twelve [211] axes. The only sure test of such a
suggestion would be observation of magnetic satellite
reflections by neutron diffraction. Failure to have no-
ticed small gaps in tunneling studies' of Pb might be at-
tributed to the fact that normal tunneling directions are
[111]or [100]. The discrepancy' between X determined
from T, and X determined from tunneling, transport, or
heat capacity, may be the SDW effect given by Eq. (19).

It is possible to estimate the SDW transition tempera-
ture Tsnw from the data in Fig. 1. We suppose that Pb
has twelve linear SDW's. The heat-capacity tail (near
T,/T 11) caused by each SDW would be about —,', of
the value shown in Fig. 1, i.e., slightly above the curve
for g =0.002 in Fig. 5. It follows from Eq. (9) that each
SDW energy gap is 2G -0.2 eV. Since 2G
-3.5kTsnw, ' we find TsDw-660 K, which is above
the melting point. Accordingly we would not anticipate
transport anomalies caused by a SDW phase transition
in the normal state of (crystalline) Pb.
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