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The zero-temperature superfluid onset transition for a system of repulsively interacting bosons in a
random potential is studied. The associated quantum critical behavior is characterized in d dimensions
by exponents v=2/d, n, and a dynamic exponent z. Static and dynamic scaling laws are derived: Some
measurable exponents, such as z =d, are predicted exactly. Applications to experiments on ‘He ab-

sorbed in porous media are discussed.
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Perhaps the best studied phase transition of all is the
transition from normal to superfluid “He as the tempera-
ture is decreased through the A point. The corresponding
transition in thin films is also well understood both
theoretically' and experimentally.? Yet the problem of
superfluid onset at zero temperature for helium in a ran-
dom medium has received surprisingly little theoretical
attention,>™> particularly in light of numerous experi-
ments on such systems as *“He absorbed in porous
media®’ and on various substrates.? In these systems, it
is found that a critical density of “He, n., is needed for
the system to become superfluid at any positive tempera-
ture 7. The implied transition at 7 =0 as the density is
increased through n,, represents an onset of superfluidity
controlled entirely by quantum fluctuations. This onset
transition is the subject of this paper. Although the on-
set transition only occurs strictly az T =0, and is thus
multicritical, the properties of the transition will also
control the low-temperature behavior for » in the vicinity
of n..

Zero-temperature transitions occur in many physical
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yields the free-energy density f=—(BV) ~'InZ where
B=1/T, V is the volume, and we have set A =m =1.

In the absence of interactions, all the bosons at 7=0
will condense into the lowest-energy single-particle
eigenstate of the potential U(x) which will be localized.
Thus, in contrast to Fermi systems, the repulsive interac-
tions are needed to stabilize the system. If the charac-
teristic magnitude of the random potential is weak com-
pared to the interactions and the chemical potential p
adjusted so that the density n~a ~¢ the system should
be superfluid and the random potential merely a weak
perturbation. Conversely, if the random potential is
large or the density small, then one can fill the low-lying
localized states of the potential almost independently

systems: the transition from singlets to antiferromagne-
tism,® onset of superconductivity in granular materials,’
and metal-insulator transitions in disordered Fermi sys-
tems.'® The experience of studying the A transition in
“He suggests that the 7'=0 transition of *He in random
media may lead to insights into more complicated 7 =0
transitions.

We will argue that repulsively interacting bosons in a
random potential undergo an onset transition whose crit-
ical behavior is characterized by exponents v=2/d, 7,
and a dynamic exponent z which we predict is equal to
the spatial dimension d. Scaling laws for various static
and dynamic properties for n=n, and T small are de-
rived following Ma, Halperin, and Lee.” Many of these
depend only on z and we can thus predict some ex-
ponents exactly.

Specifically, we consider a system of bosons with
repulsive interactions, g(x —x') of range a moving in a
random potential U(x) with the density controlled by a
chemical potential u. The partition function Z
= [DyDy* exp(—S) in terms of the imaginary time ac-
tion

(1

with bosons until the energy ¢; (because of the repulsive
interactions and random potential) is greater than y. In
this regime, the hopping between the localized states will
be small compared to the typical excitation energies
€;—p and, by analogy with strongly localized Fermi
systems, the equal-time Green’s function G(x,x')
=(y " (x)y(x")) will typically decay exponentially. The
system will thus not be superfluid in this regime
—indeed, it will be insulating at zero temperature. We
refer to this phase as a Bose glass.

Let us consider schematically how the Bose-glass
phase is destroyed as u increases with 7=0.'" As the
exchange between the “localized states” grows, the low-
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energy quasiparticle excitations will become less local-
ized and the Bose statistics more important. When the
localization length of the lowest quasiparticle excitations
diverges, additional bosons can condense into the avail-
able extended state, thereby becoming superfluid.'> This
schematic argument suggests that a transition will occur
directly from the Bose glass to the superfluid at some
critical chemical potential u..'>'* We define 6=p —pu.
to be the distance from this transition.

From the above picture, it is apparent that the
compressibility x =dn/du will be nonzero in the Bose-
glass phase since there will always be somewhere in the
system where the (free) energy, ¢; — pu, required to add a
quasiparticle will be arbitrarily small. In the superfluid
phase, k will also be nonzero, so we expect that x> 0 at
the transition. !>

Investigation of the critical behavior at the onset tran-
sition is impeded by two factors, as discussed in detail in
a longer paper'®: First, the Bose-glass phase does not
appear at all in an infinite-range-hopping mean-field lim-
it about which one might hope to expand, and, second,
since both disorder and interactions are necessary for the
Bose glass to occur, there does not appear to be a natural
Gaussian limit about which one can expand as attempted
by Ma, Halperin, and Lee.’ Indeed, we will argue that
it is likely that there is no upper critical dimension for
this problem. Fortunately, recent work'® in one dimen-
sion does provide an important reference point with
which we can compare the general scaling arguments
given below.

The superfluid onset transition is driven by a competi-
tion between boson exchange, which tends to minimize
the gradients of the phase of the order parameter, and
the interactions and disorder which tend to minimize the
number of fluctuations. Thus quantities which directly
involve this competition should exhibit simple scaling be-
havior. In the superfluid phase, one such quantity is the
fourth-sound (or in films third-sound) velocity, c4, given
at T=0 by ¢ =p,/x where p; is the superfluid density.
At wavelengths much larger than the correlation length
& in the superfluid, the (imaginary time) action for
fourth sound can be expressed solely in terms of the

phase ¢ of the order parameter'¢:

Se=4 [atx [ arlo,(v4) 2+ x(8,)71, @

where the second term, which involves the full compres-
sibility, arises because the phase is conjugate to the rotal
number density n.

Our basic scaling Ansatz is that, as u— u. from
above, the scaling of the fourth-sound fluctuations will be
given by the fundamental characteristic correlation
length & and correlation frequency Q ~¢& 7, where z is
the dynamic critical exponent. In particular, this implies
that c4~&' 7% so that z is determined by the scaling of
the static quantities p; and «. This is directly analogous
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to the dynamic scaling behavior at the usual A point of
“He as described by “Model F.”!" In our case, however,
the fluctuations are purely quantum mechanical so that
dynamic and static quantities are inexorably linked.
Thus we expect that characteristic excitation energies
and temperatures will scale in the same way as the
characteristic frequency Q.

Further scaling laws can be obtained by an argument
analogous to hyperscaling at conventional thermal tran-
sitions. In particular, from Eq. (2) it is apparent that p;
and x can be defined in terms of the change in energy
under an appropriate change in boundary conditions'®
(which imposes, say, a twist of the phase by = in space or
time, respectively). Then a straightforward application
of finite-size scaling gives'®

ps~8° with{=(d+z—-2)v, 3)

which is a generalization of Josephson’s reiation'® to the
T =0 onset transition as obtained previously by Ma,
Halperin, and Lee® and

K~ |8 @, 4

Here we have used £~ |8| ~". A similar hyperscaling
argument yields that the singular part of the free-energy
density given by f;~ |8|27%~ 8| @+, Taking two
derivatives with respect to u yields a singular part of the
compressibility

K5~|5|(d+2)v—2~|5| —a (5)

We now have two alternatives: either (i) x is dominated
by its singular part so that x~ k, implying zv=1 or (ii)
k— const at u. and k; represents a singular correction.
In this case we obtain z =d from Eq. (4).

In order to distinguish between these two cases, we
can apply the general inequality for the correlation-
length exponent v for random systems'® v>2/d. This
implies that for any positive z, @ <0 and hence x cannot
diverge. Thus the only way the singular part of x can
control the dynamics is if xk— 0 at g, in which case (i)
applies and z<d/2. This is a priori unlikely since it
would imply a gap for particle-hole excitations (at
u=u.) which there is no reason to expect.'* Moreover,
the physical requirement that ¢4 does not diverge as
8— 0, implies z=1 for all d, or z>d/2 for d <2.
Thus, at least for d <2, case (i) is definitely ruled out
implying z =d.

In one dimension Giamarchi and Schulz'® have inves-
tigated the onset transition in a random potential and
found that x and ps both go to a constant at u, with?®
v=o00 and z =1, consistent with our scaling laws for case
(ii). We note that a naive (and perhaps questionable)
extrapolation?' of the renormalization-group equations
of Giamarchi and Schulz to d =1+ ¢ yields, to leading
order, z =1+ ¢ also consistent with the equality z =d.

Before listing predictions of the scaling picture, we
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comment on the likely behavior in higher dimensions. In
the absence of an explicit applicable mean-field or
Gaussian calculation, we can try to guess the upper criti-
cal dimension, d., by asking whether v=% and ¢{=1 in
some dimension. This would suggest that d. =2. How-
ever, from the correlation-length inequality'® v cannot
be § in d=2. This implies that either (a) the mean-
field limit is unconventional, (b) the scaling law z =d
breaks down in some unknown way (implying the ab-
sence of fourth sound in scaling functions), or (c) the
equality z =d and hyperscaling is valid in a// dimensions.
Given the problems with obtaining a mean-field limit
mentioned above and in detail in Ref. 13, it appears that
possibility (c) is most likely and we will assume this
henceforth. (We note that such an absence of a mean-
field limit is also believed to occur for the Anderson lo-
calization transition of noninteracting fermions. '%)

A scaling law for the superfluid density can be ob-
tair|1ed| from (3) with temperatures scaling as &°°
—_~ 6 ZV:

ps (T ) ~89*r2=2vp(T/| 8] %) . (6)

In d <2, the crossover scaling function P is zero except
when its argument ¥ =0, while in d = 2, P is nonvanish-
ing for 6> 0 and u <u., where u, is some critical value
of u. As u— u, from below, P(u)~, —u) 2"
where vr is the exponent for the thermal superfluid tran-
sition in the medium. Thus for d = 2, the superfluid
transition temperature is T.~|&|?". More directly
measurable is the behavior of 7. as a function of
ps(T=0): T.~p;(0)* with>

x=z/(d+z—2)=d/(2d —2). @)

]

As T— 0, the specific heat Cp should vanish as
(T/C4)d~Td5dV(l —Z)""TC(T/T()d

in the superfluid phase since the single-particle excita-
tions will presumably be subsumed by the superfluidity.
In the Bose-glass phase, on the other hand, localized
quasiparticle and quasihole excitations should give rise to
a constant density of states yielding a linear specific heat
as in other disordered systems. At u., scaling implies
Cp~T%*~T. In addition, at u, we have the multicriti-
cal correlation length &(u., T)~T ~'%-.

Another important quantity is the linear (mass) con-
ductivity o of the system driven by a chemical-potential
gradient. The conductivity should scale with the particle
diffusivity, D = o/, since « is constant at u.. Moreover,
since disorder is important at the fixed point, one expects
D to scale as £277 implying

o(T,u)~TEPs(T|8]%). (8)

For d = 2 the scaling function (u)— const for u— o
(i.e,, at u.) diverges at the superfluid transition as
u— u, from above for § > 0; and vanishes for u— 0 on

the Bose-glass side, i.e., § <0. In the Bose glass, the
low-temperature conductivity is presumably of a
variable-range-hopping form as for the Fermi glass':
o(T)~expl— (Ty/T)”], with y <1 and the characteris-
tic temperature Ty ~ | 8| "

Applications to helium.— The most obvious applica-
tion is to 3D systems of “He absorbed in various porous
media, such as Vycor and silica gels.®”?> The primary
measured property is p;(7T,n), and it is found that
ps(0) =0 for n<n, with n. corresponding to about 2
monolayers of “He on the inside of the pores. Most pre-
vious work*® has assumed that this is an inert layer and
that for n 2 n, the remaining helium atoms behave ap-
proximately like a dilute Bose gas with the rather ques-
tionable additional assumption that the random potential
can be neglected. This picture yields p;(0) ~n —n, and
the exponent in Eq. (7) with x=1%, in d =3. However,
provided the so-called inert layer has a nonvanishing
compressibility (at 7=0), as it most surely will, asymp-
totically close to the T=0 (quantum) onset transition
the critical behavior should be controlled by the scaling
theory described above.?*® Specifically, we predict in 3D,
x=7% and ¢{=2(d—1)v= %, the latter in strong con-
trast to the inert layer model value of 1. (Note that a
constant x at u. enables one to scale with n —n, instead
of 8.)

More generally, the scaling of p;(7,n) should be
governed by Eq. (6) with finite-temperature (thermal)
critical behavior near T.(n). Detailed comparison with
experiment might be impeded, though, by the narrow-
ness of either the (T'=0) quantum or thermal asymptot-
ic critical regimes. The apparent narrowness of the
quantum onset critical region in Vycor® is presumably
due to the low rate of exchange between the almost solid
layers and the more mobile atoms. However, the (small)
tail observed in p,(0) as n is decreased does, indeed, sug-
gest a crossover into the nontrivial onset critical region
with an exponent ¢ of order 2.® A wider and more acces-
sible quantum critical regime is expected in systems with
strong disorder, uncorrelated down to atomic scale, for
which the compressibility for n Sn. will be large. Pre-
liminary fits to the data on carbon black, which exhibits
a wider apparent critical regime for p;(0) as a function
of n, yield a value of {=2.5 and x = 0.8. 2

By contrast, at the thermal transition, strong disorder
is expected to impede the observation of true critical be-
havior. Indeed, the slow transient associated with the
weakly irrelevant disorder (@7 S0) would probably lead
to an apparent exponent larger than the expected asymp-
totic vir = % (as observed in experiments on *He in sili-
ca gels®??). More experiments on both these and other
related systems, such as “He films absorbed onto strong-
ly disordered 2D substrates, would certainly be desirable.

In summary, we have produced scaling arguments for
the critical behavior near the onset of superfluidity of bo-
sons in a random potential at zero temperature. The
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critical behavior is determined (except for the hard to
measure 1) by the dynamic exponent z =d, which we
conjecture holds in all dimensions, and v=2/d with
v— oo as d— 1. Some of the concepts are likely to be
applicable to disordered quantum spin systems, to the
onset of superconductivity in amorphous and granular
systems,’ and perhaps will also lead to insights into the
subtle effects near zero-temperature metal-insulator
transitions'® in interacting Fermi systems for which
there is no simple order parameter. For disordered su-
perconductors undergoing a transition from an insulator
to a superconductor, we note that the present work
should apply with a modification to account for the
long-range 1/r forces between the Cooper pairs. This
yields z =1 for all 4 rather than z =d.

We would like to thank John Reppy’s group at Cornell
University for sharing their data with us before publica-
tion, and Pierre C. Hohenberg, Michael E. Fisher, Peter
Weichman, and especially Geoff Grinstein for useful dis-
cussions. Thanks are also due to the Aspen Center for
Physics where this work was begun.

1J. M. Kosterlitz and D. J. Thouless, J. Phys. C 6, 1181
(1973).

2D. J. Bishop and J. D. Reppy, Phys. Rev. B 22, 5171
(1980); G. Agnolet, thesis, Cornell University, 1983 (unpub-
lished).

3A. Gold, Z. Phys. B 52, 1 (1983); J. M. F. Gunn and M. A.
Brackstone, to be published.

4P. B. Weichman, M. Rasolt, M. E. Fisher, and M. J.
Stephen, Phys. Rev. B 33, 4632 (1986).

SM. Ma, B. I. Halperin, and P. A. Lee, Phys. Rev. B 34,
3136 (1986). Note that, as pointed out by Peter Weichman, a
crucial term of the form y* 3.y is dropped in the effective field
theory, invalidating the e-expansion results.

6J. D. Reppy, Physica (Amsterdam) 126B, 335 (1984);
M. H. W. Chan, K. I. Blum, S. Q. Murphy, G. K. S. Wong,
and J. D. Reppy, to be published, and unpublished.

1850

D. Finotello, A. Wong, K. A. Gillis, D. O. Awschalom, and
M. H. W. Chan, Jpn. J. Appl. Phys. 26, Suppl. 26-3, 283
(1987).

8See, e.g., R. R. P. Singh, M. P. Gelfand, and D. A. Huse, to
be published.

9See M. P. A. Fisher and G. Grinstein, Phys. Rev. Lett. 60,
208 (1988), and references therein.

10See P. Lee and T. V. Ramakrishnan, Rev. Mod. Phys. 57,
287 (1985).

1 For a similar heuristic discussion, see J. A. Hertz, L. Fleish-
man, and P. W. Anderson, Phys. Rev. Lett. 43, 942 (1979).

I2Thus it appears implausible that an intermediate “Bose-
metal” phase could exist. See A. J. Leggett, Phys. Fenn. 8,
125 (1973).

I3M. P. A. Fisher, P. B. Weichman, G. Grinstein, and D. S.
Fisher, to be published.

14Subtleties occur when the potential U(x) has a periodic
component, as discussed in Ref. 13. However, with disorder,
the superfluid onset transition will remain the same.

I5T. Giamarchi and H. J. Schulz, Europhys. Lett. 3, 1287
(1987).

16Well into the superfluid phase Eq. (2) can be derived
directly from Eq. (1). The coefficient of the second term in (2)
can be deduced, generally, by noting that 3¢ enters the action
(1) only via the combination (d:¢+iu), which implies that a
slow twist of ¢ in (imaginary) time corresponds to a small
change in —iu. Thus the associated stiffness to the twist must
be simply «, since k= —3%f/0u>.

17p. C. Hohenberg and B. 1. Halperin, Rev. Mod. Phys. 49,
435 (1977).

I8M. E. Fisher, M. N. Barber, and D. Jasnow, Phys. Rev. A
8, 1111 (1973), Sec. VI.

19J. T. Chayes, L. Chayes, D. S. Fisher, and T. Spencer,
Phys. Rev. Lett. 57, 2999 (1986).

20In contrast to the expectation of Ref. 5, this transition is
not in the universality class of the anisotropic random coupling
1+1 dimensional X-Y model for which disorder is strongly ir-
relevant (Ref. 13).

21See D. R. Nelson and D. S. Fisher, Phys. Rev. B 16, 2300
1977).

22K . 1. Blum, J. S. Souris, and J. D. Reppy, unpublished.

23The compressibility in the superfluid phase could be ex-
tracted by measurement of both p; and cs.



