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Layered Structure in Condensed, Cold, One-Component Plasmas Conlned in External Fields
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Argonne National Laboratory, Argonne, Illinois 60439-4843, and
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(Received 8 February 1988)

Novel features of solids that may be formed from cold, condensed plasmas confined in external fields
(storage rings or ion traps) have been investigated with molecular-dynamics calculations. Such plasmas
have well defined outer surfaces and interior layers that are parallel to the outer surface. In each layer
the particles are arranged in an approximate hexagonal pattern of a two-dimensional Coulomb lattice.
The interactions between layers have also been investigated: They are relatively stronger in the straight
(commensurate) and virtually absent in the curved (incommensurate) directions.

PACS numbers: 52.25.Wz, 29.20.Dh, 52.65.+z, 52.75.Di

The prospects for achievement of cold one-component
plasmas in ion traps' and storage rings look promising
for the near future. Molecular-dynamics (MD) studies
of such plasmas, with an external confining force that
approximates the average focusing fields on a particle
beam in a storage ring, have been reported. It was
found that above a critical linear density, the particles
arrange themselves in one or more, well defined, cylindri-
cal shells. The particles within each shell form a hexago-
nal pattern, very similar to the one characteristic of a
two-dimensional Coulomb lattice, while (for a multi-
shell beam) the overall correlation function in three di-
mensions shows structures with a coordination of 14 and

58, characteristic of body-centered-cubic (bcc) symme-

try. Since the two symmetries are incompatible, their
presence in the same array must be approximate. In
Ref. 3 it was also reported that a system with three-
dimensional confinement that approximates the geome-
try of ion traps shows spherical shells with similar
features.

In the present work, the properties of such systems
have been investigated further with one- as well as two-
and three-dimensional confinement, and very similar re-
sults are obtained in each case. A harmonic restoring
force was assumed: for three-dimensional confinement,
F= —K[(x +y +z )]'I; for two-dimensional confine-
ment, F= —K[(y +z )]'I; and for one-dimensional
confinement, F= —Ex, where EC is the force constant. A
1/r interparticle force was used throughout.

These systems were studied with the methods of
molecular dynamics with repeating boundary conditions
to allow for extension in the unconfined directions. Vari-
ous systems of 200, 700, or 2000 particles were allowed
to settle gradually into a state sufficiently cold for
thermal oscillations to be small. The systems started
with random coordinates which were allowed to settle for
at least a hundred steps (0.5 time unit, as defined below)
at each temperature, starting with I =1 and finishing at
I =2000, changing through at least three intermediate
levels of temperature. [I—:(q /a)/kT, q being the
charge, a —= (3/4trp) 'I the average spacing, p the density,
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FIG. 1. Particle density (per unit area) as a function of dis-
tance for one-, two-, and three-dimensional confinement. The
distance for the top figure is that from the central x=0 plane;
in the rniddle figure it is the radial distance from the
(y=0, z =0) line; and on the bottom it is the radial distance
from the origin, all in units of the appropriate a.

and kT the temperature. '] Calculations with different
initial conditions or cooling procedures resulted in quali-
tatively similar, though not precisely identical, results.
The density profile of particles along the direction of
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confinement is shown in Fig. 1, from which it is clear
that the feature of a layered structure is common to all
these systems: A one-dimensional force produces flat
sheets; two- and three-dimensional forces produce cylin-
drical and spherical shells, respectively. The two-
dimensional order within each layer is particularly strik-
ing: Correlation functions are shown in Fig. 2. The dis-

tances in these systems may be compared in terms of the
average particle spacing a, defined above, which is

equivalent to a =(3q /K), (3q /2K), and (q /K) for
the one-, two-, and three-dimensional systems, respec-
tively. In units of the appropriate a, the following spac-
ings are compared in Table I: the average spacing be-
tween shells (or sheets) D,h, the average nearest-
neighbor spacing between particles within a shell 5, and
the widths (FWHM) of the outermost shell and the
second from outer shell, W,b(outer) and 8',b(2). The
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TABLE I. Spacings for ordered Coulomb solids with exter-
nal confining forces.

ash S/Dsh Wa, (outer) W, t, (2)

1D
2D
3D

1.38
1.48
1.49

1.74
1.80
1.80

1.26
1.22
1 ~ 21

0.040
0.038
0.046

0.094
0.10
0.15

bcc (110)
fcc (111)

1.44
1.48

1.85
1.81

1.29
1.22

widths are approximate (~ 20%); they seem quite sensi-
tive to the details of the MD calculation. Repeated cal-
culations with different numbers of particles and
different initial conditions gave very similar results as far
as the correlation functions and the quantities in Table I
are concerned, though the detailed arrangement of parti-
cles within each shell (where the hexagonal patterns gen-
erally have some defects, since a perfect hexagonal pat-
tern is not possible on a closed curved surface of arbi-
trary size), as well as the relative arrangement of parti-
cles between different shells, was not the same when con-
ditions were varied. Smaller values of I (down to about
200) showed the same general pattern, with the correla-
tion functions and the widths of the layers becoming
broader for higher temperatures.

All the systems studied show very similar characteris-
tics. For each, the outermost shell is extremely sharp, on
the order of a few percent of the intershell spacing; the
following shell is a factor of 2-3 thicker, but after that
there is no strong increase in the widths of subsequent
layers. The limit to the number of shells has not been
explored; up to eight layers, the maximum obtainable in
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FIG. 2. The correlation function (probability of finding a
particle a given distance from any other particle) within one
sheet or shell is shown in the top and second frames for one-
and two-dimensional confinement. That for three-dimensional
confinement is similar. The numbers on the figures indicate
the coordination for the peaks: the total number of particles
up to that distance. The distance scale is normalized to 1 for
the nearest-neighbor peak. The-third frame shows the correla-
tion function expected for an ideal "hexagonal" pattern; while

the bottom one is that for the (110)plane of a bcc lattice.

FIG. 3. The pattern of +'s connected by lines on the left-
hand figure is that for regular hexagons, similar to that seen in

the MD calculations, and corresponding to the (111)planes of
an fcc lattice. The 0's and x's show the lattice positions in

subsequent fcc planes. The right-hand figure shows the position
of lattice sites in the (110) plane of a bcc lattice, with the 0's
showing the next plane. The correlation between particles
within layers in the MD calculations are similar to that corre-
sponding to the pattern on the left, while the correlation be-
tween layers is more like that in the bcc lattice shown on the
right.
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the present calculations, have been seen. Values calcu-
lated for (110) planes in a bcc lattice are similar, yet not
directly comparable. These planes contain elongated
hexagons as shown in Fig. 3, and the two-dimensional
correlation function in such a plane is not consistent with
that found for the individual layers in the confined sys-
tems in the MD calculations, as was demonstrated in

Fig. 2. The values for fcc (111)planes are also shown in

Table I.
Since, for one-dimensional confinement, the particles

are in plane sheets, and the complications of curvature
are absent, the correlations between particles in adjacent
sheets are of interest. Here, however, the exact number
of particles and the exact cell size becomes significant,
since the symmetry may be sensitive to the exact size of
the repeating cell. Within the limitations of the avail-
able computer time, it has not been practical to study
systems much larger than about 2000 particles. The cell
size was chosen to yield six layers with about 340 parti-
cles each, two layers on the outside, two second from the
outside, and two on the inside.

The "hexagonal" pattern discussed in the context of
Fig. 2 is a feature of the (111) planes of a face-
centered-cubic lattice; however, there the planes alter-
nate in an (a, b,c,a, b, c, . . . ) pattern. The lattice in the
present one-dimension ally confined systems does not
show such a pattern; instead, adjacent planes show regu-
lar hexagons within each layer, as is evident from the

correlation function of Fig. 1, but alternate in an
(a, b, a, b, . . . ) sequence, which is characteristic of the
(110) bcc planes, shown in Fig. 3. Of course, for many
layers, this pattern must lead to a transition to an overall
bcc symmetry in the interior, since this is the result of
calculations for an infinite plasma; the hexagonal pat-
tern seems to be associated with the surface and near-
surface planes, perpendicular to the confining force; all
six planes exhibit it in the present calculation. For the
two- and three-dimensional confinement there is no re-
peating pattern evident between adjacent shells: There
cannot be any clear correlation since the surfaces are not
commensurate because of the curvature. For these sys-
tems, the hexagonal pattern is clear in all except the in-
nermost shells, which contain very few particles.

For the three-dimension ally confined plasmas, the
number of layers n, must be independent of the magni-
tude of the confining force—it depends only on the num-
ber of particles as long as the system is sufficiently cold
(I 200). The equilibrium configuration is independent
of this force; only the overall size scales with it. The
number of shells determined from a series of calculations
is n, = (N/4) '~ . If k is the number of particles per unit
length (in units of a) then for the cylindrical case
n, =0.8X'; and n, =0.43a for one-dimensional confine-
ment, with cr the areal density in the same units.

The interaction between shells has been studied with
the MD method. The particles in one shell (the second
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F(G. 4. Components of kinetic energy in various systems plotted as functions of time, in units of 1/rrr I, [where

rv&I»m. —= (4rrpq'r'm) ' '], the reciprocal of the plasma frequency characteristic for each system. At a given time the particles in one
layer (the second from the outside) are given a linear or rotational velocity in a direction perpendicular to the confining force. For
the upp« two figures the solid line represents translational kinetic energy along the symmetry axis (g —, mv„ in ilrlits of the dimen-

»onless temperature for I =200), and the dashed line is the kinetic energy associated with rotation about that axis. prl the lower

left, the solid line is for translational kinetic energy along the imposed motion and the dashed one is for motion perpendicUlar to the
first, both along the planes; for the lower right the dashed line is for rotational and the solid one for radial kinetic energy.
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from the outside) were given a small velocity with

respect to the others; the calculations were used to ex-
plore whether there are any restoring forces, and the ex-
tent to which kinetic energy of a particular mode of
motion of one shell is damped into kinetic energy associ-
ated with other degrees of freedom. The results of these
calculations are shown in Fig. 4. It is evident that, for
three-dimensional confinement, the rotation of one
spherical shell of particles and, for the two-dimensional
case, the rotation of a cylindrical shell both proceed rela-
tively unhindered (within the limits of these calcula-
tions) and with no observable elastic restoring force or
frictional dissipation into other microscopic modes. On
the other hand, the longitudinal motion of a cylindrical
shell and, for one-dimensional confinement, the lateral
motion of one plane with respect to the others both are
subject to a relatively much larger restoring force, and
are damped by frictional heating, transferring kinetic en-

ergy into other degrees of freedom.
It appears that motion along the degrees of freedom

that are represented by curved coordinates (rotation),
where the particles cannot interlock, since the surfaces
are incommensurate, can proceed relatively unhindered.
In the straight directions, where the surfaces are com-
mensurate, the interparticle forces between the shells or
layers become appreciable, and the motion is damped.

In conclusion, it seems that all systems of Coulomb
solids that are reported here have a number of common
characteristics induced by the external confining forces.
These are a well defined surface layer, perpendicular to
the direction of the confining (harmonic) force, hexago-
nal ordering within that surface, subsequent regularly
spaced inner layers with similar ordering, and forces be-
tween the surfaces that are much weaker for relative dis-
placements in the direction of curvature than in straight
directions.

Some work has been done on the extension of these
calculations to anisotropic confinement (F~WF, for two-

dimensional confinement or F &F~=F, for the three-
dimensional case) with similar results. The layered
properties of these plasmas under external confinement
appear to be a rather general phenomenon. Results
showing similar layered structures from molecular-
dynamics calculations for three-dimensional confine-
ment, using a Hamiltonian with the "guiding center" ap-
proximation representing a magnetic Penning trap, have
been published since this work was submitted.

This is the continuation of work started with the late
Aneesur Rahman, and his adaptation of the MD method
to this class of problems opened the way to this line of
inquiry. Discussion with other colleagues is gratefully
acknowledged, in particular with M. Marder, S. Pieper,
and P. Vashista. This work was supported by the U.S.
Department of Energy, Nuclear Physics Division, under
Contract No. W-31-109-ENG-38. Calculations reported
were done on ERCRAY, and the Cray-2 at the Universi-
ty of Minnesota.
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