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Finite-Size Properties of the Angle-Dependent Surface Tension of Rough Interfaces
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A study is reported of finite-size, L, corrections for the surface tension of rough interfaces, i.e., for
temperatures Tg & T & T, in 3D, 0& T & T, in 2D. A universal leading contribution proportional to
(lnL)/L is predicted in 2D. This term is a result of the characteristic rough interface fluctuations. In

3D, the leading corrections are of order 1/L.

PACS numbers: 68.10.Cr, 05.50.+q, 68.35.Md

Recent Monte Carlo (MC) studies' of the roughening
transition and related interfacial properties in the 3D Is-
ing model have raised an interesting theoretical question
regarding the finite-size effects on the anisotropic surface
tension of rough interfaces. To define the problem, con-
sider first for simplicity a 2D Ising-like system of size
L XM, depicted in Fig. l. By the fixing of the boundary
spins as shown, an interface is induced connecting the
points (0,0) and (L,h). Note that T & T, is assumed,
and I suppress the parametric T dependence of various
quantities.

Let Z(h, L;M) =2+ -/Z+ y denote the partition
function of the system normalized by the partition func-
tion of a reference single phase -system obtained by the
replacement of all the fixed negative boundary spins by
positive ones. For jtxed h, with L and M large, let us
define the step free energy in 2D by

s(h, L M) = —In[Z(h L'M)/Z(O, L;M)l,

If, however, we fix the angle by requiring h =L tan8 (see
Fig. 1), we can define the surface tension in 2D, per unit
length (and per kaT),

a(8,L;M) = —(cos8/L)lnZ(L tan8, L;M).

My aim is to analyze finite-L (and M, etc.) effects for
rough, i.e., strongly fluctuating, interfaces. Thus, we can
choose any T from 0 & T & T, in 2D, but Ttt & T & T,
in 3D (see van Beijeren and Nolden2); the precise
definition of sizes, s, cr, in 3D will be given later. I con-
sider the case when the x axis (Fig. 1) coincides with a
symmetry direction of the underlying lattice structure,
and assume a local stable minimum of tr(8)/cos8 (i.e.,
free energy per unit projected length). For the bulk
(L,M =oo) quantities we have s(h, oo;oo) =0, and

cr(8, ; )/cos8=r+ -' «82+0(8 ),

with

where we measure all the free energies in units of kaT. r=o(0, ~;~) & 0,

tc=g (0, oo; oo ) + tr" ((),oo oo ) ) ()
(4)
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FIG. 1. Finite-size 20 Ising-type system of dimensions
LxM. (For symmetry, I take M even. ) A long contour
separating the regions of opposite magnetizations is shown

schematically.

I always assume M=O(L), and
~

h
~

&&L, which corre-
sponds to ~8~ &&I in (2).

Studies of finite-size effects on interfacial properties
have been initiated in recent years. Several regimes of
interest can be identified. For T= T, , a finite-size scal-
ing description has been formulated for the surface ten-
sion'4 with an emphasis on universal amplitudes,
similar to the bulk quantities. Near Ttt, scaling forms
have been conjectured' and tested by numerical MC'
and transfer-matrix calculations. A related topic of
finite-size scaling at wetting transitions has been investi-
gated recently.

Away from the "critical" regions near T, and Ttt, for
Ttt & T & T, (with Ttt =0 in 2D), one can consider size
effects on the fluctuations of rough interfaces. For a
linear interface of length L in 2D (Fig. 1), the transverse
fluctuations ' are on the y scale —JL. (The analogous
scale in 3D is -lnL. ) If the transverse system size, M,
is of order JL or less (in 2D), then the interface fluctua-
tions will be suppressed: Such effects have been exten-
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sively studied for 2D systems. ' ' Available results in

3D are more limited. ' Since we consider M =O(L), the
finite-M effects are exponentially small in M /L-L.
Thus, I will omit the M dependence of various quantities
below.

My study of finite-L effects will be formulated first for
the 2D case. Extension to 3D will follow. My main re-

sults are represented by relations (8) and (9) and (18)
and (19) below. Relevant MC' and exact' ' results
available in the literature will be discussed; however, I
also checked my 2D predictions by extensive solid-on-

solid model calculations. ' Finally, the case of the "rig-
id" interfaces for T & TR (in 3D) is outside the scope of
the present investigation.

It is well established (see Fisher' for a review) that
the probability distribution for a contour separating the
+ regions (Fig. I) to reach a height h =L tane=LO at a
distance L along a symmetric lattice direction is Gauss-

ian in h, for ~h ~
&&L, with width —JL. This directed

random-walk-like property of line interfaces in 2D has
found extensive theoretical uses. "'s For the geometry
of Fig. 1 we thus propose the following phenomenologi-
cal expression for the partition function,

valid for
~

e~ &&1. The first factor models the free-
energy cost of creation of an interface of length L. Thus,
we expect limL rL = r [see (4)]. The last factor repre-
sents additional entropic effects due to interface inclina-
tion, measured with respect to 8 =0. The stiffness
coefficient in the bulk limit is x (see Fisher and co-
workers. ' ' ) Thus, limL xL=x.. The normalization
factor in (5) has been calculated in terms of the dimen-
sionless displacement h/X=LO/X, where X is a micro-
scopic length scale of the order of one lattice spacing, by
my first rewriting the Gaussian factor as exp[ —(xt,X /
2L)(h/k) ]. Less "microscopic" arguments substantiat-
ing relation (5), which can also be extended to the 3D
case, will be proposed later.

The quantities rL and xL, are noncritical. We there-
fore expect standard O(L ') "end-point" finite-size
corrections. 's Thus, I conjecture

rL =r+a/L+o(L '), xL =x+b/L+o(L '). (6)

Recall that a, b, and other "constants" are T dependent.
Since relation (5) should be accurate up to corrections

of order Le additive to Le in the exponential, it can
only be used to estimate the first two terms in the expan-
sion

Z(LO, L)=e " (x X'/2')'t'e (5)
(O, L, ) = (o,L)+ ,' "(o,L—,)e'+o(e')

By using (2), we get

(7)

1+o —.
L

)+ ln(L/X) + a —I n(k, /x2n)' + I

2L L L

In(L/A, ) + b —a+In(kx/2n) 't

2L
'

L

s(h, L)=xh /2L. (lo)

This relation was derived (for 2D and 3D, with a some-
what different notation) by Fisher and Weeks, ' within
the capillary-wave theory. ' The interface is described

Note that the leading correction terms, ~ (lnL)/2L,
have no free parameters. Although no detailed study has
been published for the 2D Ising model in the geometry
considered here, Abraham' reported the presence of the
(InL)/2L correction in o(O, L), which he found "surpris-
ing" (see pp. 63 and 64 of Ref. 13). For solid-on-solid
model results, consult Ref. 14.

For the step free energy (I), we use (5) with h fixed.
The discreteness of small angles e=h/L, corresponding
to h of the order of few lattice spacings, is not signifi-
cant. Indeed, the Gaussian distribution in h is a
central-limit-theorem-type result and only requires

~
h

~
&&L. We get

by a smooth single valued -function y(x); compare Fig.
1. The free energy of small distortions is modeled by
2 xfgdx[y'(x)] . The effect of a step is estimated' by

the replacement of y'(x) by the average interface slope
h/L. Such a mean-field-type estimate should be correct
at this coarse-grained level of description, with the
"macroscopic" x. Indeed, (10) is obtained. Note the
characteristic I /L and h 2 dependences. Relations
(8)-(10) have been confirmed by explicit 2D solid-on-
solid model calculations. '

For an interface of length l, forming a small angle p
with symmetric direction, we can calculate the angle-
dependent step free energy s&(h, l) by using relation (5).
Thus, the reference interface connects the origin of the
xy plane to the point (l cosp, ising), while the "stepped"
interface ends at a point displaced perpendicularly by h,
i.e., at x =Icos& —hsing, y=lsinp+hcosp. For
« 1, a long calculation yields

s~(h, l) =o "(0,~)hy+h[2hx+2(2b —1)y+3hxy ]/4l+o(l ', y ).

The leading correction (-1/I) shows the crossover to (10) as p~ 0.
In 3D, we introduce the third coordinate axis, z, pointing out of the plane of Fig. 1. We consider a finite system of
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op(a, p) =z+ —,
' xia'+ —,

' x2p', (i2)

with z, x~, x2&0; compare (3) and (4). However, in or-
der to avoid unilluminating mathematic complications,
we will use a one-angle description. This corresponds to
interfaces with the normal vector in the xy plane. The
appropriate restriction for the a,p variables reads
sinp/sina =tany. The 3D surface tension is then defined

size LXMxN, with 0~z ~N, where N=O(L). The
boundary conditions at the x =O,L and y = + M/2 faces
are shown in Fig. 1, for z =0. They are extended identi-
cally for all 0 ~ z ~ N. At the z =O,N faces, we assume
free boundary conditions. Thus the interface is perpen-
dicular to the xy plane and forms an angle 8 with the xz
plane. Generally, the orientation of interfaces in 3D,
with respect to a reference plane (xz here), is specified
by two angles W.e assume that xz is a symmetry plane
such that the surface tension measured per unit project
ed area (in the xz plane), op, has a local minimum when
the interface is in the xz plane, as compared to all in-
clinations.

Let xyi denote a coordinate system obtained by a ro-
tation by angle y about the y axis. We specify the in-

clination of a general plane by the angles a and p formed

by the intersection of the xy and yi planes with the x
and z axes, respectively. The quantities sina and sinp
undergo orthogonal transformations upon y rotations.
Thus one can find an appropriate y with a principal
coordinate system such that the minimum of op(a, p) is

diagonal, for small a and p,

Z —exp[ L—N(z+ —,
' x8 )]. The next step is to interpret

this approximate equality by the identification of possible
sources of finite-size corrections. A plausible conjecture
1S

Z(8,L,N) =R(L,N)exp[ LN—(rt. N+ —,
'

xt. iv8 )1,

(is)

o(O, L,N) =o(0,~,~)+a/L+ A/N,

o"(O, L,N) =o "(0, , )+ + (i9)

where for the coefficients in the exponential we generally
assume the leading 1/(size) corrections, '

zt. tv
= r+a/L+A/N, xt. g =x+b/L+B/N. (16)

The prefactor R(L,N) accounts for possible power-law
(in L,N) terms similar to the normalization factor
—1JL in (5). However, with no "microscopic" substan-
tiation of relation (15) available in 3D, it is not clear
how to normalize the distribution in 8, or more general-
ly, in the angles a,p. For example, if we speculate that a
one-variable normalization in terms of dimensionless dis-
placement h/X =L8/X suffices, we get

R(L,N) ~(N/L) '". (i7)

Fortunately, as long as R obeys a power law in L,N, the
contribution due to this factor in 3D is not the leading
one. Accepting (17) as a tentative estimate, we get

o(8,L,N;M) = — lnZ(h =L tan8, L,N;M).

(i3)
Relations with the forms (3) and (4) apply, with the
effective stiffness coefficient given by

x = x ~ cos y+ x 2 sin y. (i4)
Qther inclinations can, in principle, be accommodated by
the redefinition (rotation) of the coordinate system, and
the L x M x N sample boundaries, about the y axis.

We are interested in a relation of the type (5). To this
end, observe that the leading exponential dependencies in

(5) can be obtained by the following phenomenological
argument which we formulate here in the 3D notation.
First, we solve (13) for Z. We then argue that for large
L, o(8,L,N)/cos8 is well approximated by the bulk ex-
pansion (3) and (4). Therefore, for small 8, Z must
have a leading exponential size dependence of the form

where the higher-order corrections in (18) and (19) are
of order L 2 [recall that we assume N=O(L)1, includ-

ing terms + ln(L/N)/2LN due to the factor (17).
The form of (17) is suggestive of a more general con-

clusion. Indeed, when expressed in terms of the reduced
displacement h/k, the Gaussian dependence in (15) cor-
responds to the distribution width —(L/N) 't —1. Even
without the precise microscopic prescription for calculat-
ing the normalization factor R in 3D, we can anticipate a
much weaker size dependence than in 2D, due to weaker
interface fluctuations.

The 3D result' for the step free energy also follows,
similarly to (10),

s(h, L,N;M) = ——ln
Z(h) (20)

For the step free energy of a slightly inclined interface
(but still perpendicular to the xy plane) the 3D analog of
(11) reads

s~(h, l, N) =o "(0,~, ~)hy+h(2hx+4by+3hxy )/41+(B A)hy/N, — (2i)

where the notation was explained in connection with (11). As mentioned, relation (20) arises naturally' within the
capillary-wave approach. ' ' Note that (20) and (21) are not sensitive to the precise power-law dependences of
R(L,N), to the leading orders shown.
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The 1/N correction term included in (16), (18), (19),
and (21) can be eliminated' [finite-N effects in (16)
made exponentially small] by use of periodic boundary
conditions in the z direction. In the recent MC simula-
tion ' of the 3D Ising model of size L x L x L, the bound-

ary conditions were periodic in z, antiperiodic in y, and
helical in x; see Ref. 1 for details. Some 1/L surface-
tension corrections are apparently present' even with
these optimal boundary conditions, probably these are
a/L and b/L type terms; see (18) and (19). The 1/L
dependence of the step free energy (20) [which is not a
result of corrections in (16)] has also been observed nu-

merically. '

In summary, I have obtained new results ' on the
finite-size properties of the surface tension in 2D and 3D
systems in the block geometry, for Ttr ( T ( T,. My 2D
predictions are summarized by relations (8) and (9). A
notable result is the universal form of the leading
surface-tension correction in (8) and (9). The 3D results
(18) and (19) are consistent with the recent MC
findings. '
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