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Polarization Instabilities of Counterpropagating Laser Beams in Sodium Vapor
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We have observed temporal instabilities in the polarizations of counterpropagating laser beams in
atomic sodium vapor. For intensities slightly above the instability threshold, the polarizations fluctuate
periodically. For higher intensities, the fluctuations are chaotic and the system evolves on a strange at-
tractor whose fractal dimension increases with increasing laser intensity.

PACS numbers: 42.50.Tj, 42.65.—k

One of the conceptually simplest processes in non-
linear optics is the mutual interaction of two counterpro-
pagating laser beams in a nonlinear medium. However,
recent work has shown that this interaction can give rise
to extremely complicated dynamical behavior, including
chaotic temporal evolution of the intensities and polar-
izations of the transmitted waves. The possibility that
instabilities can occur in the interaction of laser beams
are very important from a practical point of view, be-
cause instabilities can lead to the degredation of process-
es that utilize counterpropagating laser beams, such as
optical bistability, phase conjugation, squeezing, and
nonlinear laser spectroscopy.

Silberberg and Bar-Joseph' first pointed out theoreti-
cally that instabilities can occur in counterpropagating
laser beams for the case of scalar waves interacting in a
nonlinear Kerr medium characterized by noninstantane-
ous response. The origin of this instability is the com-
bined action of gain due to four-wave mixing and distri-
buted feedback due to scattering from the grating
formed by the interference of the incident laser beams.
Quite recently, Khitrova, Valley, and Gibbs have ob-
served an instability in the intensities (but not the polar-
izations) of counterpropagating laser beams in sodium
vapor. Gaeta et al. have pointed out that when the vec-
tor nature of light is included in the theoretical formula-
tion for the case of a nonlinear Kerr medium, the nature
of the predicted instability is quite different in that the
state of polarization and not necessarily the intensity of
the light becomes unstable. Furthermore, these authors
showed that, in general, the threshold for the polariza-
tion instability is lower than that predicted by the scalar
theory of Silberberg and Bar-Joseph, ' and that the po-
larization instability can exist even for the case of a
medium with instantaneous response. Slightly above the
threshold for this instability, periodic fluctuations of the
polarization state were predicted, while chaotic behavior
was predicted for input intensities sufficiently far above
threshold.

In this Letter, we present experimental results for the
case of sodium vapor showing that the polarizations of
counterpropagating laser beams are temporally unstable.
We have measured the time evolution of the resulting

fluctuations and hence have studied the dynamical evolu-
tion of the system. We have determined the route to
chaos for the system, have constructed the attractors
describing the evolution of the system in phase space,
and have determined the fractal dimensions and metric
entropies characterizing these attractors. The nonlinear-
ity of sodium vapor cannot be totally explained by the
Kerr-medium model; however, our results are in good
qualitative agreement with the predictions of Ref. 3. For
example, the threshold that we have measured for the
polarization instability is considerably lower than that
reported by Khitrova, Valley, and Gibbs for the intensi-
ty instability. These results suggest that polarization in-
stabilities of the type predicted in Ref. 3 are not unique
to the Kerr nonlinearity but can occur whenever vector
waves interact in a nonlinear medium. There have been
a number of additional experimental studies sho~ing
that instabilities and chaotic behavior can occur in pas-
sive nonlinear optical systems; however, such studies
have required the use of external feedback or compli-
cated geometries to induce the instability.

Our experimental investigation of the stability of
counterpropagating laser beams made use of the highly
nonlinear response of the sodium 3S|12 3Pt12 atomic
transition. Counterpropagating beams were derived
from the output of a continuous-wave dye laser whose
frequency was tuned through the atomic transition fre-
quency. The input power of one of the beams (which we
will call the forward beam) was held fixed at a value of
160 mW and measurements were made for various input
powers in the other beam (the backward beam). Polar-
izing beam splitters were placed in each beam so that the
input beams were linearly polarized with parallel polar-
izations. Our experiment involved measuring for the for-
ward beam the fluctuations and average power of the
light emitted in the polarization orthogonal to that of the
input beams. It was found that the threshold for the in-
stability depends sensitively on the atomic number densi-
ty, the buffer gas pressure, and the precision to which the
two beams were counterpropagating. We found that the
instability threshold decreased with decreasing buffer gas
pressure, and for this reason all of the data reported here
were collected using a low helium-buffer-gas pressure of
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—15 mTorr. For an interaction length of 5 cm and a
beam diameter of 750 pm, the number density which

produced the largest conversion into the orthogonal po-
larization was found to be —2x10' atoms cm

We first characterized the instability in terms of its
dependence on the laser frequency. We measured the
average power generated in the orthogonal] polarization
for the forward beam as a function of the detuning of the
laser frequency from the atomic resonance. Figure 1

displays this dependence for an input power of 150 mW
in the backward beam and a sodium number density of
-2x10' atoms cm . The tick marks indicate the po-
sitions of the four hyperfine components of the
3S|i2 3P]i2 sodium transition. We see that as much
as 20% of the incident power can be converted into the
orthogonal polarization. The excitation spectrum is also
seen to be very rich, containing spectral features that are
much narrower than the -2-GHz Doppler width. We
have found that the generated light associated with each
of these features has a distinct optical spectrum and tem-
poral behavior. The spectrum of the light generated in

the orthogonal polarization was measured by a scanning
Fabry-Perot interferometer having a resolution of -250
MHz and by a spectrum analyzer having a frequency
range of 100 Hz to 1 GHz. The temporal evolution of
the intensity was measured with a ten-bit transient digi-
tizer with a sampling rate of 200 MHz.

For the central feature of Fig. 1 [i.e., for a laser detun-
ing of 1.01 6Hz to the high-frequency side of the
3S|i2(F=2) 3P 1i2(F =2) transition], the generated
light was found to be at the same frequency as the input
light. For this value of the laser detuning, the instability
threshold corresponds to a power of 15 mW in the back-
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ward beam. Slightly above this threshold, the power em-
itted in the orthogonal polarization was observed to be
nearly constant in time, corresponding to the dc instabili-
ty predicted by the Kerr-medium model. For powers
well above the threshold value, weak oscillations were
observed in the generated signal with a frequency —10
MHz.

For the spectral feature of Fig. 1 to the low-frequency
side of the central feature, the emission spectrum con-
tains three frequencies: a component at the input laser
frequency and two sidebands symmetrically displaced by
1.8 GHz, which is the ground-state hyperfine splitting.
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FIG. 1. Laser-frequency dependence of the instability in the
polarizations of counterpropagating waves. The average power
generated in the polarization orthogonal to that of the input
beams is plotted as a function of the laser frequency for a
power of 160 m W in the forward beam and 150 m W in the
backward beam. The four tick marks on the horizontal axis,
labeled a-d, indicate the positions of the (F=2) (F=1),
(F=2) (F =2), (F=1) (F=1), and (F =1) (F=2)
hyperfine components of the 3Slg 3PIg2 sodium transition,
respectively.

FIG. 2. Temporal evolution of the light generated in the or-
thogonal polarization. The laser was detuned 310 MHz to the
low-frequency side of the 3S]p2 (F=2) 3P]12(F=2) transi-
tion, the input power of the forward beam was 160 mW, and
the input power in the backward beam was (a) 25 mW, (b) 27
mW, and (c) 31 mW. The attractors shown in (d)-(f) corre-
spond to the time series shown in (a)-(c). These attractors are
reconstructed by our plotting the power emitted in the orthogo-
nal polarization at time t+ T: vs that emitted at time t for time
delays r equal to (d) 55 ns, (e) 100 ns, and (f) 50 ns.
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The majority of the power was emitted in the low-

frequency (Stokes) sideband. This observation suggests
that for certain laser frequencies, stimulated hyperfine
Raman scattering is the relevant nonlinear coupling
mechanism. The spectrum of the strong (trapezoid-
shaped) feature to the high-frequency side of the central
feature has similar frequency components as the low-

frequency feature, with the majority of the power con-
tained in the anti-Stokes sideband.

Rich temporal behavior was observed for the low-

frequency feature. Figure 2 displays this behavior for a
detuning of 310 MHz to the low-frequency side of the
3S1i2(F=2) 3PIi2(F=2) transition. In this case the
instability threshold corresponds to a power of 24 mW in

the backward beam. For a power of 25 mW, oscillatory
evolution was observed, as shown in Fig. 2(a). With
small increases in the power, the evolution changed to
self-pulsing [Fig. 2(b)], and then to wildly fluctuating
oscillations [Fig. 2(c)].

To characterize the nature of the time behavior shown
in Figs. 2(a)-2(c), we have studied the evolution of the
system in a two-dimensional, time-delay phase space.
In each of the three cases illustrated in Figs. 2(d)-2(f),
the trajectory is seen to fill phase space in a highly
nonuniform manner, suggesting that the observed fluc-
tuations are not due to random noise. The trajectories
shown in Figs. 2(d) and 2(e) [corresponding to the time
evolutions shown in Figs. 2(a) and 2(b), respectively]
form closed loops, broadened somewhat by noise intro-
duced by our detection system, demonstrating that the
evolution of Figs. 2(a) and 2(b) is periodic. The trajec-
tory of Fig. 2(f), which corresponds to the wildly fluc-

tuating time series of Fig. 2(c), appears not to form a
closed curve. This behavior suggests that the evolution is
chaotic and that the phase-space trajectory forms a
strange attractor.

To verify these conclusions quantitatively, we have

calculated the correlation dimension, D2, and the order-2

Reyni entropy, K2, of our experimental attractors using
both the fixed-mass method of Badii and Politi and the
fixed-volume method of Grassberger and Procaccia. In
Fig. 3, we show the dependence of D2 and K2 on the
laser power for a detuning of 310 MHz to the low-

frequency side of the 3S|iz(F=2) 3P ig(F =2) tran-
sition. It is seen that a Hopf bifurcation occurs at the in-

stability threshold of 24 mW in the backward beam,
where the evolution changes from that of a fixed point to
that of a limit cycle. For powers of 25 and 27 mW, the
dimension of the attractors is nearly unity and the entro-

py is approximately zero, showing that the evolution is

periodic in these cases. This result confirms the assess-
ment given above based on a visual inspection of the at-
tractors. For a power of 31 mW, we find that the correla-
tion dimension is equal to 2.7 and the order-2 Reyni en-

tropy is equal to 6x10 bits/s. The fact that the order-2
Reyni entropy is greater than zero proves that the system
is chaotic in this case. For still higher laser powers, the
calculated dimensions grow rapidly with increasing laser
power. The error bars become large as the dimension in-

creases because, for both the fixed-mass and the fixed-
volume methods, the scaling region' is small because of
the limited size of our 16384-point data sets. The in-

crease of the dimension of the attractor with increasing
laser power shows quantitatively that the dynamics be-
comes more complicated as the system is driven further
into the nonlinear regime.

In conclusion, we have shown that counterpropagating
laser beams in an atomic vapor can be unstable to the
growth of periodic or chaotic temporal fluctuations in the
polarizations of the transmitted beams.
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FIG. 3. (a) Correlation dimensions, D2, and (b) order-2 Re-
nyi entropies, K2, of the attractors reconstructed from time
series data for a detuning of 310 MHz to the low-frequency
side of the 3S|g(F=2) 3Pv2(F=2) transition and for a
power of 160 rnW in the forward beam as a function of the
power in the backward beam. For powers greater than 27
mW, the order-2 Renyi entropy is greater than zero showing
that the system is chaotic.
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