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New Mechanism for Superconductivity in Cosmic Strings
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We point out the existence of reasonable models in which cosmic strings contain charged-vector-boson
fields, and show that these give rise to vector-meson superconductivity analogous to Witten's scalar-
boson superconductivity. In addition, in such models the electromagnetic field is distorted within the
string in such a way that it couples to the otherwise neutral Higgs field, giving a new mechanism for sca-
lar superconductivity.

PACS numbers: 98.80.Cq, 11.15.Ex, 11.15.Kc

In some models containing cosmic strings' the strings
exhibit superconductivity; if this actually occurs in na-

ture, it can have very important cosmological conse-
quences. Witten, in Ref. 2, discussed two mecha-
nisms, involving, respectively, charged-scalar-boson and
charged-fermion fields, which can produce superconduc-
tivity. Both mechanisms are model dependent, and
hence they do not guarantee that cosmic strings, even if
they exist, are superconducting. As we shall see below

there is a class of reasonable models in which there are
strings with charged-vector-boson (CVB) fields. This
raises the question of whether CVB's, like charged sca-
lars, give rise to superconductivity. (Preskill has
remarked on the possibility of CVB superconductivity,
though without discussing specific models or details. )
We shall find that superconducting CVB currents can
indeed be induced. Moreover, in these models the elec-
tromagnetic (EM) field within the string is distorted in

such a way that it couples to the scalar Higgs field of the
string, which is electrically neutral outside the string
core; this can also give rise to electric currents in the
string. Thus we find that there is a plausible class of
models in which cosmic strings exhibit superconductivity
due to a new mechanism.

As a specific example of such a model, consider the
following chain of possible spontaneous symmetry break-

ing:

spin(10) SU(5) SZ2 SU(3) SSU(2) SU(1)8Z2

—SU(3) SU(1)SZ&,

where Z~ is an unbroken discrete symmetry group of two
elements. Strings are formed in the first phase transi-
tion, when the discrete symmetry appears in the unbro-
ken subgroup, which we will call H, and in which a sca-
lar Higgs field acquires a vacuum expectation value, p; p
stands for a vector, whose dimensionality is that of the
representation of 6 in which p belongs. We let q be the
value of

~ p~ at which the Higgs potential takes on its
minimum value. Along a circle parametrized by the an-

gle 8 and centered on a string, p is given by

y(8) =g(8)y(0) =exp(ir'8)tt (0),

where P is the nontrivial element of Z2. The string has a
radius of order ro = (rie) within which

~ p ~
differs

significantly from its asymptotic value of ri, where e is
the gauge coupling constant; we are assuming, for sim-

plicity, that the gauge- and Higgs-boson masses are ap-
proximately equal.

In addition to p there are also gauge-boson fields asso-
ciated with the string. Consider a single string loop. We
adopt an approximately cylindrical coordinate system
with coordinates r, 8, and z with the z axis along the
string, which for most purposes can be regarded as
straight since the radius of curvature, R, is very large.
We may choose a gauge in which p is constant asymptot-
ically and also on the surface 8=0; z', and therefore p,
will then be independent of z. One can then write the
coupled field equations for p and the gauge fields A„',
where i ranges over the generators of G. With the excep-
tion of At't, the azimuthal component of the field coupled
to S, A„' =0 in vacuum since the current j„' to which it
couples vanishes, while

Ae =At't(r) ——I/er (ro«r «R) . (3)

We will adopt the notation A„(r) for the vector belong-
ing to the adjoint representation of 6 whose components
are A„'(x.).

The generator S is not uniquely determined by the
condition (2), and one must appeal to dynamics to deter-
mine it. In the spin(10)~SU(5)SZ2 example, it is
shown in Ref. 8 that for most, and probably all, values of
the Higgs potential parameters the lowest mass per unit
length for strings is given, up to a gauge transformation,
by the choice S=t~, where t~ is the first component of
the right-handed weak isospin; hence this choice of S,
which we assume from now on, is likely to describe ener-
getically stable strings. Since [tt't, g]e0, where Q is the
EM charge, A~ for this choice of S is a charged field.

where r' is the matrix of S, one of the generators of G; S
is not a generator of the unbroken subgroup H, and thus
acts nontrivially on p. For the string to be topologically
stable and p to be single valued, r' must satisfy

exp(2trir') =P,
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u(8) =exp(iT'8)u(0), (5)

with T' the matrix of S in the adjoint representation.
We take a set of unit basis vectors in internal space
which are eigenvectors of T' and write

u(O) =g„c.u. , (6)

where T'u„=nu„with all n integral, as they will be in

models where Anv is single valued. In our model, Q
=Yg+tp, where Yg, the right-handed analog of the

For S=rJi, the generators of H, in particular Q, de-

pend on 0, with

.&(8) =g(8).&(0)g '(8).
Let Anq(x, ) be the EM vector potential and u(0) a unit
vector in internal space in the direction of Q at 8=0 and

belonging to the adjoint representation. A„(x,) is the
component of A„(x,) in the direction of u (8) where

weak hypercharge, is an SU(2)R invariant, which means
that n in Eq. (6) takes on the values 0, + l. Equations
(5) and (6) now give

~ =g„c„ne i—neAn (7)

Compare this case with the case of a charged-scalar
field as discussed in Ref. 2. Let q be the electric charge
carried by the scalar field and p, be its expectation value
within a string. Global EM gauge invariance allows the
replacement p, e' v'p„where a is a constant phase an-

gle. One then generalizes to solutions with a=a(z),
where a(L) —a(0) =2NJr for a string loop of length L;
the topologically conserved winding number N may have

any integer value. For an isolated loop, solutions with
N-0 describe states carrying a persistent nonzero elec-
tric current. The present case differs in a significant
way; because Q depends on 8 there is no such thing as a
global electromagnetic gauge transformation. The an-
alogous transformation under which the interaction be-
tween p and Ae is invariant is

Aer' exp[is (8)a] [Aez'+ (a/er) tier (8)]exp[ —iz (8)a] . (8)

Even with a constant, the 8 dependence of Q forces the
presence of a nonvanishing inhomogeneous term in the

gauge transformation (8), without which (8) would not

yield a static solution of the field equations. If aeo, this
term is singular at r =0 where 8, and hence Q, is

undefined; hence a =0 at r =0. Thus, if one attempts to
generalize by letting a a(z), one finds that the winding

number N 0 at r=0. Thus N 0 at all r, since if
N(r)eo, Ae must vanish at some ri (r to avoid a
discontinuity in N at temperatures below that at which
H develops a U(1) factor and becomes multiply connect-
ed, and it will be energetically favorable for ri to relax
toward r =cns with time, leaving N=o within the string
in equilibrium. Since N =0, we can, and shall, choose an

EM gauge, which we call the z gauge, with A& given by
Eq. (3) and independent of z (and 8). The fact that
N =0 means that a totally isolated string loop will carry
no current. The Maxwell equations will be homogeneous
in A„, and, apart from possible gauge artifacts, the only
nonsingular solution satisfying the boundary condition of
vanishing at infinity will be the trivial one A~ =0.

The situation is different, however, if the loop responds
to an external EM field, whose sources provide inhomo-

geneous terms in the field equations. This difference
reflects the fact that the current in a superconducting
loop depends both on the winding number N, which

determines the total magnetic flux through the loop, and

on the external magnetic flux. We look for solutions to
the field equations for a string in the presence of a plane
EM wave polarized along the z axis. We take the wave

to have frequency co((g so that for most purposes we

can consider the fields as static and neglect time deriva-
tive terms. In the z gauge the wave will be described by
an A„whose only nonzero component is A„which is in-

F„",= (8„A,"+ienA„'A,") . (lo)

In Eq. (9) J," and J,""are, respectively, the gauge-boson
and Higgs-meson contribution to j,". Since 8,&=0, the
only contributions to J," arise from the terms in the
Hamiltonian which give mass to the vector bosons. Let
M be the vector-boson mass contribution to the Hamil-
tonian; we can write

JM 2 (m 2 ) iJ'A»A J /2 yi His A i /2

where the (m )'J are the elements of the mass-squared
matrix, which are quadratic in p. Then

JnH g~ 2/gA n (12)

dependent of z. This follows because one can easily see
that there is a contribution to the current je coupled to
Aii which depends on Anv; this current is similar in struc-
ture to the EM current which we obtain below in Eq.
(17) but will be quadratic in one of the components of
the EM vector potential rather than in Aq, and will be a
small correction to the principal contribution to je com-
ing from the Higgs field p. Thus in a gauge in which
Aq depends on z, Ai'i will also.

The definition of the u„ together with the fact that
TJk-ifJ'" where the fJ'" are the structure constants of
G, implies that f '"= —in' "in our basis. With use of
this, the Yang-Mills equation for A," in the presence of
the gauge field Ae of the string can be written (repeated
indices are summed over)

(gn+ienAsn)Fn gisFn Jn JnH

where the field tensor F„", is given by, taking account of
the z-gauge condition,
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Outside the string, if the only external field present is the
EM field satisfying Eq. (7), the fact that the photon
mass is zero means, of course, that M =0, and since this
is necessarily a minimum of M, it follows from (12)
that J,""=0 outside the string; however, we shall see that
J," does play a role within the string core.

Let a, (x„)be a solution of the Abelian-Maxwell equa-
tions describing, in z gauge, an EM wave in free space
polarized in the z direction. Then a solution to Eqs. (9)
and (10) outside the string is given by

A, (x„)-a, (x„)u(8),

and thus AJ=a, . That is, one obtains a solution in the
presence of the string in which, outside the string, the
Abelian solution simply rotates in internal space as one
goes around the string to follow the direction of Q. To
verify that Eq. (13) does provide a solution, note that,
combined with Eqs. (5) and (6), it yields

(i4)

which in turn gives

Fn ein8g a (15)

since, taking Eq. (3) into account, the contribution from
the azimuthal component of the gradient acting on e'"
just cancels ienA8A,". A similar cancellation then implies
that Eq. (15) substituted into Eq. (9) reduces, for J,""

0, to one of the Maxwell equations for a„which is

J," c„yn r a, ,„&(l/r r/ro)e™e/ro—= c„yn ra, ,xie'" /ro .

Thus J, 0. For n&0, J, WO; I", the total gauge-boson
current obtained by integration of J," over the cross sec-
tion of the string does vanish because of the factor e'" .
However, I" is not gauge invariant, since the value of the
integral can be changed by a local gauge rotation which

alters the relative signs of J," at different values of 8, and
the vanishing of I" is a gauge artifact, as we shall see
later.

There will also be a nonzero contribution to J,""
within the string. It vanishes only when one has a pure
photon field, which means, from Eq. (14), A "/A =c„/co.
This fails within the string because A"-r" for r 0. In
particular, consider Jo"; this is independent of 8 and
hence gives a nonvanishing I when integrated over an-

gle. The 8 independence follows from Eq. (11) and the
invariance of M under gauge rotations generated by S;
thus J, , like A, , must also be invariant under such

gauge rotations. To find J, , we take the difference be-
tween its value for the actual fields, given by Eq. (16),
and its value (=0) for the same A and A" =(c„/co)A
as in a photon field. This yields

satisfied by hypothesis.
However, within the string Eq. (3) fails. Near the

string the angular-dependent terms in the Fourier series
for a, vanish at least as fast as air, so that a, is isotrop-
ic at small r. Then, using Eq. (14) for the exterior solu-
tion and imposing continuity at the string boundary, we
can write within the string

A" (r)e'"8

Reading off J," from Eq. (9) then gives for the gauge-
boson currents

J," en A' A,"(1/r+eA8) . (i7)

From Eq. (3) J,"-0, as expected, for r »ro. Within the
string, however, J,"WO for nWO Su.ppose we put the
string in an external EM wave, one whose source is other
than the string, given near the string by a constant, a, ,„t.
The total field a, at small r is reduced by a factor
y= [I+In(q/co)l ' because of interference between the
incident and scattered waves'; in realistic models, y is

expected to lie in the range from about 0.01 to 1. The
field equations force both A8 and A," to vanish as r" at
the origin; for simplicity, we confine ourselves to the case
where n 0, + 1, as in our model. We evaluate J,"by ap-
proximating A8 and A," by the first terms in their power
series in r and setting them equal to their respective
asymptotic values, —1/er and c„ya, ,„„at r=ro. This
gives

I'"= —SCcoya,'„, , (20)

where EC is a positive constant of —1 which depends on

the details of the c„and (m ) ". The sign of I is given

by the observation that, from Eq. (11), M = —J," A,";
since M & 0, it follows that J," has the opposite sign
from 8," for all n. Let i"=I"+I"",8 be the azimuthal
component of the total EM magnetic field due to the
string, and 8 the contribution to 8 from n=0. For
r &(co ', Stokes' theorem applied to Eq. (9) gives

8 =i /2nr =loH/2irr,

since I =0, while from Eq. (15)

(2i)

A, is not a mass eigenstate, so the off-diagonal matrix
elements (m ) "a0, and their magnitude becomes of or-
der e ri~ for r ~ ro. Since p vanishes as r at the origin,
(mi)0"-r2, so within the string we can approximate

~

(m2)0"
~

=ezri2r2/ro2. Making these approximations
and calculating the current I by integrating over r
form 0 to ro gives

(i9) gn in8II 0/ (22)

We estimate J, as we did J,". We take A = cocoa, ,,„t. outside the string where only the massless component of
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A, exists, and this together with Eq. (7) and the fact
that g„ i c„ i

=1 then gives

8 = —Kya', „t/2nr, (23)

the same field that would be produced by an ordinary
current-carrying wire with an effective current

Ieff +yaext ~

The theory indeed exhibits superconductivity, since

dI«/dt = —Kydae„, /dt KyE;„t,

(24)

where E,„t is the external electric field. Thus a current
produced by a unidirectional pulse of electric field will

persist after the pulse has passed the string. The magni-
tudes of 1«and dl«/dt are comparable, in a given exter-
nal EM field, to those found by Witten for the supercon-
ducting mechanisms in Ref. 2. The gauge dependence of
the result, reflected in the appearance of a' in Eq. (24),
is only apparent and results from our use of the z gauge.

As in Ref. 2 the current will saturate when I«= ri, at
which point the interaction energy between A' and Aq

(or, equivalently, the energy in the magnetic field of the
induced current) becomes comparable to other com-
ponents of the string energy. It then becomes energeti-
cally favorable for any further increase in a,'„, to be ac-
cornpanied by a distortion of Ae within the string so that
no further increase in current results. A likely form of
such distortion would be for the —1/er behavior of As to
persist to smaller values of r than for I«0, which, re-
calling Eq. (16), decreases the effective current-carrying
area of the string; alternatively, A& might develop a zero
for some r (ro, allowing N to change for some r within
the string.

With the choice of gauge defined by the second equali-

ty in Eq. (1), the integral of B"around a closed curve C
enclosing the string vanishes for n WO because of the fac-
tor e'" in 8"; this is consistent with the vanishing of I"
noted earlier. We can, however, carry out a 8-dependent

gauge rotation generated by 5 such that on C the phase
of 8" is constant except within an arbitrarily small range
of angles 88 in coordinate space within which the entire
phase variation occurs. The gauge-invariant tnagnitude
of 8" is unaffected, and the contribution to the integral
from 60 is negligible. In the new gauge one has, using
Eqs. (20)-(24),
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i"=„Bdr=2nr8"= —c„l«,
so all the I" are unidirectional and the string carries a to-
tal EM current i =g„c„I"=I«.

Thus we conclude that there is a class of plausible
models in which cosmic strings contain gauge vector-
boson fields having charged components. External elec-
tric fields can induce electric currents in such strings
whose time derivative is proportional to the field

strength, and which are persistent once established, as in

a superconductor. The potential cosmological effects of
such currents are the same as for currents produced by
the mechanisms of Ref. 2.

It is a pleasure to thank Alex Vilenkin for helpful dis-
cussions.

1810


