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It is shown that chaotic trajectories in volume-preserving llows, r=u, (x,y, z, t), which are arbitrarily
close to integrability, 0& e«1, can be either trapped or diffusive throughout the available space. A
classification of these flows is proposed which both distinguishes and predicts the appropriate type of be-
havior. In the unbounded case, a new mechanism of diffusion is found which combines motion on the
resonances with an adiabatic drift. This process is reminiscent of Arnol d diffusion.

PACS numbers: 05.45.+b

Temperature, small particles, the concentration of a
second fluid, and the magnetic field in highly conducting
media represent only a few examples of quantities which,
under certain conditions, are passively driven in fluid
flows. The study of their dynamics is relevant to the to-
pics of convection, the interpretation of flow visualiza-
tion experiments, theory of mixing, and the fast
dynamo effect, respectively. All these problems can be
jointly studied by employment of the idealized concept of
passive scalars. For example, in experimental fluid

mechanics, powders of particles are used for flow visuali-
zation. These particles are small enough such as not to
perturb the velocity field, u(x, y, z, t), but also big
enough in order to avoid diffusion. Under these condi-
tions the equation of motion for one passive scalar

r=u

is a highly nontrivial dynamical system, L. We sha11

study only velocity fields which are periodic in x, y, z,
and t and also satisfy incompressibility, V u 0. The
latter implies that Eq. (1) is a volume-preserving (in
short Liouvillian) dynamical system. The stroboscopic
map of Eq. (1) is defined on the three-torus and is also
Liouvillian.

Recently, a great deal of work has been devoted to the
investigation of the particular cases of Eq. (1) in which
either u=u(x, y, t) (Refs. 3,5-7) or u—=u(x, y, z). In
both instances, two-dimensional surfaces invariant under
the time evolution of L are found for small but finite
departures from integrability governed by the parameter

As a consequence, chaotic trajectories are trapped
and do not visit the entire three-torus. At least for the
u(x, y, t) case this behavior is to be expected since Eq.
(1) becomes equivalent to a one-degree-of-freedom
Hamiltonian system. The purpose of this Letter is two-
fold. First, we show that nearly integrable trajectories in
the general case are by no means necessarily trapped. In
this context, we shall propose a classification of the possi-
ble dynamical behaviors of Liouvillian maps (L) for
small e into four categories according to the form of the
corresponding integrable case (L ); only the first two of
those display trapped motion. Second, we describe a

novel type of diffusion found in the last category of
Liouvillian maps which is reminiscent of Arnol d dif-
fusion.

We begin with the classification of the L maps,
L:T T . ' " Using a natural extension of concepts
from Hamiltonian mechanics, we can split the three vari-
ables into actions and angles I E T", e E T ", where
k 0, 1,2, 3, such that the integrable cases, Lt„are

(2)

mcoi(I*)+nco2(I ) =2trk (3)

is satisfied for m, n, k =integers, a thin layer of two-tori
around I* will degenerate in a finite number of fixed
lines. By a Poincare-Birkoff-type mechanism, half of
those are stable and half are unstable. While chaotic
motion appears around the unstable fixed lines, elliptic
tubes surround the stable ones.

On the other hand, the trajectories of Lo are always
chaotic. This behavior is to be expected according to the
conservative version of the Ruelle- Takens scenario ' '
and will not be considered here any further.

We are particularly interested in the dynamics gen-
erated by L2 maps and we shall devote the remainder of
this Letter to its understanding. In this case there are
nearly integrable trajectories that cover the entire three-

Clearly, Lk are uniform translations on (3 —k)-tori
embedded in T . Small perturbations of Lk, Lq =Lk
+eP(I, e), exhibit widely different behaviors. Since L3
is the identity map, L3 is a small perturbation around the
time-independent particular case, u=u(x, y, z). It is
therefore expected and found that L3 displays chaotic
trajectories which are bounded between Kol'mogorov-
Arnol'd-Moser-type (KAM) invariant surfaces.

Interestingly, the chaotic trajectories of L& are also
trapped. The invariant objects of the corresponding in-
tegrable case, Lt, are two-tori which separate T into
disconnected regions. For 0 (e((1, most of the two-tori
are preserved in a KAM-type manner. However, if the
equation
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FIG. 1. Trajectories and theoretical predictions for the case ro, (x,y) =Clcosy+B2sinx with Cl -Bl 4. Also a&i 1, a+2 2.5,
a&[ 1.5, and a&2=2. In this case I (&,k) cross all Zp at least once and therefore a single trajectory will cover the entire T for arbi-
trarily small e. (a) Projection on the actions plane of one trajectory at eg =En 10 . Thc dotted llllc ls tllc I (l,p) surface. In order
to emphasize the resonant jumps, only a small fraction of the plane is shown. (b) Some of the level curves of Ho(x, y) (solid lines)
and the first turn of the trajectory shown in (a) (dashed line). (c) Two trajectories at e& =0 corresponding to the (n, k) (1,0) and
(125,—23) resonances, respectively. (d) The resonant surfaces of Eq. (8) with n ~ 3 (solid lines) and the (n, k) (125, —23) trajec-
tory (dashed line).

torus. In order to illustrate the mechanism of difl'usion

in L2 maps, let us consider
x' x+ t.'a ag i sinz+ t.'g ag2cosy,

differential equations if t =en

dx/dt =ac2cosy, dy/dt =attlsinx, (6)

5+ &A aB 1 s1nx + eg ag 2 cosz, (4)
which can be exactly integrated. The trajectories of Eq.
(6) are level curves of the Hp(x, y) function

z' =z+ ro, (x',y') .

This example should be regarded as a truncated Fourier
expansion of the most general perturbation around an
L2-type integrable case. In Eq. (4), co„a~l, aa), ac2
and a~z are —1, while eR and e~ are much smaller. For
the first part of the discussion we assume eR =e~ =e.
The integrable case, L2, is obtained when t. =0. Here,
the trajectories lie on lines for which the actions (x,y)
are constant. The motion on these lines is parametrized

Hp(x, y) aczsiny+at))cosx =p (7)

nro, (x,y) =2)rk (8)

and are depicted in Fig. 1(b). Therefore, according to
the adiabatic approximation, the trajectories of Eq. (4)
lie on surfaces, Zt) t:T, which satisfy Eq. (7). However,
this approximation will fail whenever the resonance con-
dition

by the value of the angle, z. Extrapolating the con- is satisfied. On the surfaces where Eq. (8) holds,
clusions of the KAM theorem, one might expect that un- I &„k)t:T [see Fig. 1(d)1, the angle visits only a finite
der small perturbations (e((1) a finite measure of the set of points in the (0,2)r) interval. Therefore, here the
invariant lines is only slightly distorted. However, both z-dependent terms in Eq. (4) are not averaging out any
O(e) perturbation expansions and numerical experi- more and jumps between different Zt) surfaces take place
ments disclose a different scenario. All the lines break [see Fig. 1(a)1. Since in Fig. 1(a), e is only 10, the
down and because of an effective drift, coalesce into in- influence of the resonances with n ) I cannot be seen.
variant surfaces roughly parallel to the angle axis, z. In Fig. 2 we show the value of Hp(x, y) along the tra-
This behavior can be understood in terms of an adiabatic jectory of Fig. 1(a). As predicted by the adiabatic ap-
approximation. Since the angle (z) changes fast relative proximation, Hp(x, y) is constant [up to O(e) oscilla-
to the action variables (x,y), the dynamics of the latter tions) in between the times when it crosses I (l p). In lay-
is sensitive only to the averaged z dependence. In the ers of width O(e'i ) around I tl p), the O(e) oscillations
e 0 limit and if ro, (x,y) is irrational, we can assume diverge and later, after the trajectory exits from the reso-
that z will cover the entire (0,2n) interval before the ac- nant layer, fall off to a different value of p, p', such that
tions have changed significantly. Since in the case of Eq. hp= ip' —pi O(e't ). A more precise description of
(4), (sinz), =(cosz), =0, the adiabatic motion of the ac- the behavior in Fig. 1(a) can be obtained from a pertur-
tions is described by the following two-dimensional map: bation expansion. If we write the exact invariant of Eq.

X' =X+EQC2COSJ, (5a) (4), H(x, y, z) -Pe'H;(x, y z), then to O(e), the invari-
ance condition H(x', y', z') =H(x,y, z) leads to a linear=x+ EQB1 sinx ~ 5b functional equation for 0&. This can be solved by our

In turn, Eq. (5) leads to a system of two ordinary setting Hl ph„(x,y)e'"'. The a„-Fourier coefficients
satisfy

h„(x,y) [e'"ro(x,y) —I 1 = —
2 t)) „(ia~ lani sinx —a~2ac2cosy)+ &

8' —l „(ia~ lao) sinx —a~zaczcosy), (9)
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FIG. 2. Adiabatic invariant Hp(x„y„) vs n The. trajectory
is the same as in Fig. 1(a), but 2x104 instead of 0.7x10'
iterations are shown.

and therefore are singular on the I tl i, &
surfaces. In gen-

eral, the coefficients of Ht will diverge on the I t; k) reso-
nant surfaces of Eq. (8). If in Fig. 2 we replace
Hq Hp+EHi instead of Hp, the O(e) oscillations are
suppressed [become O(e )) and consequently jumps are
observed when crossing I &2 kl surfaces as well.

To make further progress in understanding the behav-
ior of L2 maps, we need to distinguish between e~ and

hatt in Eq. (4). When hatt =0, the actions which are now

decoupled from the angle change according to Eq. (5).
Therefore, the Ztt surfaces are exactly invariant. ' On
the other hand, if e~ 0, the actions are coupled only
through the dynamics of the angle. Remarkably, this
leaves us with a three-dimensional nonintegrable map
whose trajectories lie on the I 1„ t, &

resonant surfaces [see
Eq. (8), Figs. 1(c) and 1 (d)j. In this case, the time scale
of the motion on the I"&1 k& surfaces is O(hatt), while that
on the I („k& resonant surfaces with n ) 1 is O(t. tt).
Since an O(hatt) effective coupling between the actions
appears in Lq(e~ =0), this behavior is due to a similar
mechanism as the adiabatic motion. Specifically, on a

r&„k) surface, n consecutive values of the angle are
equally distanced in the (0,2z) interval. ' Therefore, in

the nth iterate of Eq. (4), the O(hatt) term in the dis-

placement of the actions vanishes and if the O(etr) con-
tribution is averaged over the angle, ' then

[ t)roz n
xn =xo & ett&wl&~2 . z (loa)

y sin'(ro, /2)
'

FIG. 3. Theoretical (solid line) and numerical (crosses) dis-
placements in y, hytv (y& —yp)/2z for ro, (x,y) =x, t.'g =0,
and N 2x10 . The adiabatic a parameters are the same as
in Fig. 1.

sional standard map. In Fig. 3 the numerically obtained
displacement in y, Ay, is compared with the theoretical
prediction of Eq. (10). Clearly, the divergence of hy at
x 0 corresponds to the O(hatt) motion on the I (t p) sur-

face.
In view of these results, it is natural to assume that to

first approximation the dynamics of Eq. (3) when both
e'g and hatt are finite, 0 (Eg, ett ((1, is a superposition of
adiabatic motion on Zp and resonant motion on I &1 k&.

Let us use this picture to estimate the appropriate
diffusion rate. While the number of iterations the trajec-
tory moves adiabatically is N~ =O(e~ ') (between two

consecutive crossings of I &1k&), inside the first resonance
it spends Ntt O(et't/ e~ '). In the estimation of Ntt we

have assumed that, while inside the n = I resonance, the
trajectory pursues its adiabatic motion at the same

~
1

)0

(
0-4—

2 n
Vn =yp 4 pz&~1&w2

sin ro, /2
(10b)

If we set t =ezn in Eq. (10), a systetn of differential
equations is obtained in the t.~ 0 limit. Its trajectories
are given by ro, (x,y) =8 and are arbitrarily close to the
appropriate F~„,k~ surfaces.

In order to illustrate the usefulness of Eq. (10), we

study the case ro, (x,y) =x and e~ =0. Here, the y ac-
tion is passively driven by the well-known two-dimen-

O.ot O. l

FIG. 4.

Diffusion

constant vs t.'. Here e~ = eR = t.',
co, (x,y) x, and the a's are as in Fig. 1. Error bars are ob-
tained numerically. The best fit (dashed line) for D pc e' gives
a =1.99+0.3.
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O(e~ ') rate and in addition proceeds along the I &1 k&

surface with an O(eR ) velocity. Accordingly, the jump
size is O(eg e~ ') and if we assume that its direction is

random, the diffusion constant D =O(etre~ ') is ob-
tained. Numerically, we find that over time scales much
larger than the autocorrelation time, trajectories are
indeed diffusive. Moreover, when O(et') (O(e~) we

find good agreement between our estimate for D and nu-
merical experiments (see Fig. 4). However, if O(ett))O(ez) trajectories eventually stick to the resonances
I (i ki and the hypothesis leading to our estimate fails. In
this regime, the resonant motion becomes dominant and
a different diffusion mechanism which requires further
investigation settles in.

We should stress that the diffusion in L2 maps is much
faster than the Arnol'd diffusion which appears in %-
degrees-of-freedom Hamiltonian systems for N ~ 3. For
the latter, the coupling between the actions is given by
the Nekhoroshev theorem' to be exponentially small
and, as a consequence, D =0[exp( —e 'I )]. Moreover,
while in the Hamiltonian case diffusion happens through
an interconnected web of resonances, in L2 maps the res-
onant surfaces, I („ki, do not intersect and the available
space is covered as a result of the adiabatic motion. As a
consequence, in the t. 0 limit the resonances with
n ) 1 will have a vanishing contribution to the diffusion
rate of L2. Finally, we also point out that the diffusion
in L2 maps might be experimentally observed for passive
scalars in the Rayleigh-Benard system above the oscilla-
tory instability. '
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