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As a consequence of the charged nature of a dissolved DNA polymer and its sheath of counterions we
predict that there should exist normal modes of the system characterized by substantial longitudinal
electric fields and relatively small motion of the atoms and ions. This longitudinal phonon is the one-
dimensional counterpart of the plasmon excitation of three-dimensional conductors, and of the surface
plasmon of two-dimensional charged systems. The frequency of the DNA plasmon, as a function of ex-
citation wavelength, is linear in inverse wavelength at long wavelengths.

PACS numbers: 87.15.Mi, 33.20.Bx, 68.45.Kg

In three-dimensional systems containing mobile
charge carriers such as free electrons, holes, or ions, lon-
gitudinal density oscillations coupled with longitudinal
electric fields are a well-known feature of the spectrum
of elementary oscillations. These “plasmons” have fre-
quencies nearly independent of their wavelength, propor-
tional to ¢°. In the case of good metals, they lie in the
uv spectral range. A similar phenomenon is well known
in two-dimensional conducting systems as, for example,
at a plane surface of a metal. Charge-density oscilla-
tions confined to the surface and accompanying elec-
tromagnetic fields essentially localized at the surface
—surface plasmons— have frequencies near 71% of the
three-dimensional or bulk plasmons of the same materi-
al. In the long-wavelength limit, however, some types of
these oscillations have their frequencies proportional to
g'2. We study here a one-dimensional charged system,
dissolved DNA polymer, and find a wavelength depen-
dence of ¢! for the analogous modes.

Our one-dimensional system is DNA long-chain poly-
mer dissolved in aqueous medium, typically a few milli-
molar saline. This system differs from its higher-
dimensional, metallic analogs in several interesting
respects: First, two species of charge carrier are involved
in the motion, the negatively charged polymer chain and
the predominantly positively charged counterions in the
nearby water. The much greater mass of the charge car-
riers of this molecular system compared to electronic
carriers moves the characteristic frequencies of all phe-
nomena to correspondingly lower values. Second, the
non-Coulombic forces between the system components,
the atomic elasticities, play a much greater role in this
system than in the metallic cases.

We consider a wave of electromagnetic-elastic distur-
bance propagating down a long chain. When electric
forces are accounted for simply as long-range atom-to-
atom force constants, the atomic equations of motion
take the form'!

m,-'r‘,-=ZjD,~j6rj. (1)

(Exactly how these force constants are modeled makes

some numerical differences in the results without chang-
ing the essential features. We are currently developing
an improved version of the intra-base-pair force model
which in preliminary results has dropped the plasmon ve-
locity to 20 km/sec. This is still 10 times the sound
speed.)

An additional degree of freedom s(z) describes the
displacement of the first hydration layer containing the
counterions.? Its elastic properties and inertia are taken
to be those of ordinary water, and its equation of motion
that of a simple sound wave. When long-range couplings
are treated with an explicit electric field, the right-hand
side of (1) acquires another term (with a corresponding
reduction in the range of j summation):

ZjD,-erj—yis'(z)+Ez(ri)ei. (2)

The ¢; are the partial charges on the atoms and E(r;) is
the electric field at atom i. We have also added a term
describing the polymer to hydration sheath coupling
which includes the damping effects. (See also Davis and
Van Zandt.?)

To evaluate E, Gauss’ law is used to relate E and the
electric polarization P. The polarization is in turn writ-
ten in terms of the atomic displacements and the partial
charges,

P= [Z, orie; —ks(z)]/rrrlza. 3)

The linear charge density of the molecule is A, and hence
that for the hydration layer is —A.

The tangential E field is made continuous across the
boundary between the hydration layer and the bulk sol-
vent. The normal D field is discontinuous in the amount
of a surface charge layer whose magnitude is found from
the ion current density in the solvent as determined from
E, and solvent conductivity o. Standard manipulation
of Maxwell’s equations followed by Fourier expansion of
E in €% 7' yields a Bessel equation for E, and another
for E,. For the truly one-dimensional system, one poly-
mer molecule in an ocean of solvent, the appropriate
choice of solutions are Hankel functions of the second
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kind. (Fitting fields to close lying neighbors in a denser
solution would require a modified choice, of course, and
appropriately change the functional form of the result;
the problem would no longer be one dimensional.)

We apply the boundary conditions to obtain the field
at the molecule (the necessary formalism is inappropri-
ate to a Letter; the details are being published else-
where):

P(w)quo(xrl)
(ioc+ eouqu)2H | (xr1)/ €nxri — Hol(xry)qv’

4)

In this expression o is the conductivity of the saline
medium, ¢, and €y, are the dielectric constants of the
hydrated molecular core and the surrounding medium,
respectively, v is the velocity of the traveling disturbance
v =w/q, and

E.(w)=

k=g (1 — po€ouv *+ipoov/q). (5)

We can obtain a simple form for E, in the small-g limit
of all these expressions:

E, =Puovq*riinfr louegl /3. (6)

We see that the effect of this form for E, is to add force
terms in the equation of motion, Eq. (2), proportional to
g% The second time derivative in the inertial term car-
ries a factor w2 and hence w=v,q. The factor ¢ '/
within the logarithm can be separated as a separate term
in In(q 12) giving a very weak singularity at very small g.

Figure 1 shows a more complete solution of the normal
mode problem arising from the equation of motion (2).
We can see in this both the ordinary acoustic-phonon
branches as we have discussed elsewhere, along with a
few of the lowest optical branches, and the plasmon
branch which is the point at issue here.

Damping terms describing a mixed viscoelastic cou-
pling between the central polymer core and the solvent
hydration shell together with a viscous damping between
the hydration shell and the outer bulk water were includ-
ed in the equations of motion. These terms not only in-
crease the verisimilitude of the calculation but also en-
able us to evaluate the associated linewidths. There is
some contention in the experimental literature’ over the
question of whether the ordinary acoustic vibration
modes are or are not overdamped. We have chosen
values of the damping coefficients that cause definite
overdamping of the acoustic modes.* While the result-
ing Q values (Q =w/Aw) obtained for all the oscillations
are frequency and wavelength dependent, for a typical
value of ¢ we obtain Q =0.2 for the acoustic phonons
and Q =4.8 for the plasmons. The microwave acoustic
phonons are overdamped in this calculation while the
plasmons are well defined. The reason for the difference
between the damping behavior of these two different nor-
mal modes lies first in the higher frequency of the
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FIG. 1. Excitation spectrum of DNA—poly dG : poly dc
—in the lower-frequency range. The lowest-lying phonon
branch is torsional in character around the origin, and de-
scribes bending where it returns to zero frequency around
9=36°. The second branch up is the compressional-wave
acoustic spectrum. Several optical branches are shown, but by
no means the complete spectrum. The most steeply sloping
acoustic branch, drawn with the broken line is the DNA
plasmon.

plasmons relative to the phonons, and second in the rela-
tively smaller amplitude of the motions of the atoms in
the plasmon. Essentially the phonons are mechanical vi-
brations and the plasmon is more electrical in character.

We do not expect the observation and identification of
the DNA plasmon to be easy. One favorable feature of
the excitation, for observational purposes, is the large
electric dipole moment associated with it. An unfavor-
able circumstance is that the plasmon is a property of
dissolved material. The random orientations of dissolved
molecules eliminate the g selection that is so useful in
spectroscopy on crystalline or partially ordered material;
if the material is sufficiently concentrated to be orient-
able, the one-dimensional nature of the phenomenon
—and its signature, the linear w(q)—is lost.

Finally, the high velocity of the waves causes experi-
mental problems. Acoustic waves (if not overdamped)
are expected on uniform-length, plasmid-derived materi-
al in the frequency range 2 to 20 GHz.> Plasmons, hav-
ing a wave velocity 20 times higher, are to be expected in
the 40- to 400-GHz (or higher) range. This range of
frequencies is awkwardly high for current microwave
technology, although the free-electron laser may ulti-
mately be useful in this regard. The frequency range is
rather too low, however, for long-wavelength optical
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spectroscopy. Despite these difficulties, we believe the
predicted low damping and strong electromagnetic cou-
pling offer reasonable hope for observing a most interest-
ing new phenomenon.
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