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On-Site Coulomb Repulsion and Resonant Tunneling
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We study the eAect of on-site Coulomb repulsion on the process of resonant tunneling. We find that
the tunneling peak results from a crossover from the high-temperature Kondo phase to the low-

temperature mixed-valence phase of the system when the chemical potential is varied across the on-site
localized-state energy. Consequently, the line shape is non-Lorentzian, with rather unusual temperature
dependence. Moreover, a magnetic field does not split the tunneling peak, but the line shape is modified.
The eAect of coupling between localized states is also discussed,

PACS numbers: 71.55.Jv, 73.40.QV

In this Letter we discuss the effect of intra-atomic Coulomb interaction on the resonant site in the process of resonant
tunneling. Resonant tunneling is thought to be the dominating mechanism for conduction at very low temperature
through small systems with localized states. ' In the noninteracting case, this mechanism has been discussed by a
number of authors and the phenomenon can be described by a 1D model Hamiltonian Hp,

r

Hp = I g, g (c; c; pi + H.c.)+ g (c; c;+| + H.c.), tttg(c j ci +H.c.) tL(c —i cp +H.c.)+ettgnp, (1)
cr=+1 i~ 1 i & —2 0' CT

where i is the site index, 0 = + 1 is the spin index, and

np is the number operator for electrons with spin ~ on

the site i =0 with on-site energy t.p. The parameters tz
and tR « t simulate the "potential barrier" in the reso-
nant transmission problem where the site i =0 simulates
the resonance region with energy t.p. In realistic systems,
the i =0 site represents a localized state at energy et' in a
disordered region with localization length l p, with

tL&R&-texp( —lL(tt)/!0), where lL&tt~ is the distance be-
tween localized state and the left or right electrode. At
most energy values a particle is almost totally reflected

by the potential barrier, but in a very small energy inter-
val of width I around ep, the particle transmission is

greatly enhanced.
In this Letter we shall study the effect of adding an in-

teraction term HI =Unptnp~ to the Hamiltonian Ho, with
U-e /lti describing the effect of Coulomb interaction
between two electrons of different spins on the localized
state. Typically U» tL, ttt We shall .also consider the
effect of a magnetic field by adding an extra term
Htt = paBQ etna to —the Hamiltonian. We note that
this model is very similar to the one-impurity Anderson
model with the impurity d orbital replaced by a dis-
order-loc

t

by the left and right Fermi seas. The novel feature here
is that the chemical potentials of the left and right Fermi
seas can be adjusted separately.

We shall consider only the situation when the voltage
difference between the two leads is small, ' so that we are
in the linear-response regime. As a result, all we need to
know is the dc conductance G as a function of chemical
potential p for fixed ep, or equivalently G as a function of
ep for fixed p. In this case, the tunneling process can be
viewed as elastic scattering of electrons on the resonant
site and one can construct the S matrix for the tunnel-
ing process in a way parallel to the work of Langreth
for the 3D Anderson model. We first consider tempera-
ture Tp =0 where no elastic spin-flip scattering occurs,
and we consider a spin-o tunneling electron, with energy

Let the wave function of the electron be ug~' "
+vtt e '"" on the right-hand side of the scattering
center and uL e'""+vL~ '"" on the left-hand side.
Then the S matrix defined by

&RaVRa
=S

vLa&La
ahzed state and the conduction band replaced

is given by

1 2ttttttN~(ek )G~(ek +t8) 2tttttt tLN~(ek )G~(eg +16)

,
—2ttt (ttt tL)N~(ek )G~(ek+ tb) 1

—2ttttLN~(ek )G~(E'k+t8), ' (3)

where N (ek) is the spin-a-component one-particle density of states of the noninteracting electron gas coupled to the
resonant site. G (z) is the exact one-particle Green s function for an electron with spin a on the resonant site. The
transmittance T for an electron with spin cr is given by

T (ek) =12itLtttN. (ek)G. (et, ) I
', (4)
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and the conductance can be related to the transmittances
of electrons on the Fermi surface by the Landauer for-
mula. '

At zero temperature only electrons on the Fermi sur-

face, i.e., t. k =p, are important. In this case, the imagi-
nary part of the exact self-energy of the Green's function

G~(p) ts gtven by

(5)

I. I

Tp+ Ty

and the exact occupation number (np ) =(ctt cp ) is

(np ) =n 'Im[lnG (p+i8)]

Comparing Eqs. (4)-(6), we obtain
' 2

2ELER . 2sin 8,
tL+t

(6)

(b)

where b =n(np ). Equation (7) is important in that it
allows us to obtain the conductance G at zero tempera-
ture in terms of the exact ground-state occupation num-
bers (np ) as a function of ep (for fixed p). In particular,
the maximum in G (resonance) is obtained when 6=x/2,
or when (np ) is iz.

To solve our model Hamiltonian for the ground-state
occupation number (np ) is equivalent to solving the
ground state for the one-impurity Anderson model. The
exact solution for the model is difficult to obtain but the
qualitative behavior of the solution is well known. '

We shall first consider the situation of zero magnetic
field. In this case, the ground state for the model is a
spin singlet with (npl) =(npl) =np(ep). The qualitative
behavior of np(ep) as a function of ep is as follows: Fix-
ing the chemical potential p at p=0, it can be shown
from particle-hole symmetry that resonance (np= —,

' ) is

found exactly at ep = —U/2 (this is equivalent to saying
that the Kondo resonance peak is exactly on the Fermi
surface for the syrntnetric Anderson model) and that the
conductance as a function of eo is symmetric around this
point. Thus it is enough to study the case ep & —U/2.
Now, let us consider the situation —I »ep» —U/2,
where I is the resonance linewidth in the noninteract-
ing case. In this regime, the system is already in the
Kondo limit and np is very close to (but less than)
which implies the existence of a large conductance. This
is similar to the ordinary Kondo problem where a large
resistance (or elastic scattering amplitude) is found at
low temperature. The Kondo resonance moves away
from the Fermi surface only when Zo

—I, where

ep —Ep+ I

/min�(U/I

„,), when the system enters the
mixed-valence regime, where no decreases rapidly when

Fo crosses the Fermi surface, resulting in a rapid drop in

conductance. The transmittance T =T t + T i as a func-
tion of Zp at zero temperature is shown in Fig. 1(a) (solid
line) with U =200I, tL =tR, and t =1000I, where np

is determined approximately by the Gutzwiller
method' ' applied to the one-impurity Anderson mod-

I l
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FIG. l. (a) Transmittance as a function of Zp for two situa-
tions: (i) zero-temperature result from the Gutzwiller method
(solid line) and (ii) high-temperature expansion for three
different temperatures (dashed lines) knT=0. 1I, 0.21, and
0.41; the leading logarithm series has been considered in our
obtaining these results. (b) Kondo temperature Tx calculated
from the Gutzwiller method as a function of t.o.

el. Notice that Tt+ T~ 2 in the Kondo limit.
However, experiments are performed at finite temper-

ature and the zero-temperature result is valid only when
the temperature To at which the experiment is per-
formed is smail compared with the characteristic excita-
tion energy of the system, which in this case is the Kondo
temperature TK(ep). A rough estimate for TK(ep) in the
Kondo limit (ep« —I ) is' Ttt(ep) —(UI )' e
where Jp-2I /z i ep i. Notice that experimentally

-SO mK and the Kondo temperature is unattainably
low in this regime.

This estimate breaks down when t.o
—I, when the

system enters the mixed-valence regime where the
characteristic temperature is TK(ep)-r, and remains
until Zo) I, when the system enters the "empty site"
(np —0) regime where TK(ep) —ep. The characteristic
temperature Tx(Zp) as a function of ep is shown in Fig.
1(b) for the same set of parameters as used in Fig. 1(a),
TK(ep) again being determined by the Gutzwiller
method.

Typically, experiments are performed at a temperature
lower than, but of the same order of magnitude as, I
Thus the zero-temperature result is applicable only when

ep is in the range Zp
—I (mixed-valence regime). In

particular, the large conductance in the Kondo limit is
not expected to be observable. In fact, in this parameter
range where Tp» Ty. (ep), a high-temperature perturba-
tion series expansion for the transmittance is expected to
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yield the correct result. Proceeding as usual, we obtain the series expansion' '
T=gT. = 2tLtR

tL+tg t'p

2

1 +2(jp) * ln
kgTp

+ ~ ~ ~

where (Jp)* =21 /z i co i and co =so —I /z
&In(a i eo i/U), with a a numerical factor of order 1.
The high-temperature expansion result for T is shown in

Fig. 1(a) (dashed line) for three different values of tem-
perature To (we approximate a =1). Notice the rise in

transmittance as Zp
—I when the temperature is

lowered. The experimentally observed line shape is ex-
pected to be a smooth interpolation of the solid line (at
Fo) —I ) and dashed line (Fo« —I ) in Fig. 1(a).
The resulting line shape shows a peak in conductance as
in the noninteracting case, but with a very different
physical nature. In fact, it shows the crossover from the
high- to low-temperature phase of the system as Fp is

varied. The line shape of this pseudoresonance is expect-
ed to be non-Lorentzian and asymmetric with respect to
its peak position, and is temperature dependent only on

the "high-temperature" side. The peak position can also
be estimated roughly for a fixed temperature To by iden-

tifying To-Tx(Zo) and its peak value can be estimated
from the zero-temperature curve with T,„T(F)0.

The rather nonlinear shift in peak position as Tp changes
(in the range Tp& I" ) can be seen quite clearly from
Fig. 1(b).

The above picture changes completely when a strong
magnetic field (2paB» I ) is applied, when the reso-
nant site is spin polarized. In two dimensions, we align
the field in the plane so that complications associated
with orbital effects do not arise. ' As before, we shall
first consider the zero-temperature situation. Consider
the magnetic field pointing in the —i direction so that
the spin-down electron is lower in energy. Now consider

eo changing from EppaB'+r. to ~,8 —r . Because
the system is spin polarized, we expect (no/) to increase
from (nod)-0 to (noi)-I in this region when eo de-
creases, while (not) stays close to zero; i.e., we expect to
observe a real resonant peak in conductance in the spin-
down electron channel across this region, with

Ti~,„i-1 while Tt-0, by the Friedel sum rule. No-
tice that this is a one-particle resonant transmission as in

the noninteracting situation, but not a Kondo resonance.
The system stays polarized as ep decreases further, until
it reaches the regime up & —U, when it becomes favor-
able energetically to place also a spin-up electron on the
resonance site in forming the ground state. In other
words, we expect that in the high-magnetic-field case,
the main effect of the Coulomb interaction is to widen
the spacing between the resonances in up- and down-spin
channels from the "noninteracting" value of 2pBB to
2pgB+U. Notice that because of the smallness of I
(-50 mK), it is in practice not difficult to reach this re-
gime experimentally. Moreover, since these resonances
are noninteractinglike, the characteristic excitation ener-

(no )=x 'tan '(I /Eg ). (9)

It is straightforward to show that sin2x(noi) as a func-
tion of eo is not symmetric around the resonance point
(n01) = —,

' (or eo=paB 2I /x) in the limit U»2paB
»I, by our determining eo as a function of (nol) from

Eq. (9). A plot of the transmittance as a function of eo

around this resonance is given in Fig. 2 with 2paB =5I"
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FIG. 2. Transmittance as a function of eo at zero tempera-
ture in the high-magnetic-field case, 2pgB =5I

I

gy of the system is always TK ~I, and the zero-
temperature consideration would be a reasonable repre-
sentation of the experimental situation (Tp & r ).

The position of the resonance peaks and line shapes
can again be obtained approximately with the Gutzwiller
method. ' Again it can be shown from combined
particle hole and B —B symmetry that the
transmittance as a function of ep is mirror symmetric
around the point so= —U/2. Therefore it is enough to
consider the higher peak (resonance at eo-paB). In the
limit U»2pgB» I, it can be shown that the resonant
peak position is located at roughly t.'p —paB 2I /~,
with a resonance width of order I . As the magnetic
field increases from zero, it is expected that the "cross-
over" peak will gradually turn into this "real" resonance
peak. Thus in contrast to the noninteracting case, where
a resonance is expected to split by 2paB, here the reso-
nance simply shifts and changes its line shape. The line

shape is found to be strongly asymmetric around its peak
position. The origin of this asymmetry can be seen from
just the Hartree-Fock approximation where the renor-
malized on-site energy of the resonant site is given by
tg cp 0'paB+ U(no ), and (in the large-bandwidth
limit)

1770



VOLUME 61, NUMBER 15 PHYSICAL REVIEW LETTERS 10 OCTOBER 1988

and the same set of parameters for U and t.
Finally, we consider the interaction between different

localized states that are singly occupied. It is known
that on the localized side of the metal-insulator transi-
tion the local moments on singly occupied sites separated
by distance 12 interact via an antiferromagnetic exchange
J tx: exp( —1z/lo). The exponential dependence on l2
leads to a broad distribution of J, and at a given temper-
ature To, the local moments with J) To will form a spin
singlet. The analysis that we presented so far ignores
the coupling of the resonant site with other localized
states and is valid provided that J« I . In the opposite
limit J»I, the Kondo effect which affects the resonant
tunneling when To&I will be completely suppressed,
because it is more favorable energetically to form a spin
singlet with the other local moment than to form a Kon-
do singlet. In the energy range eo«3J/4, a stable spin
singlet is formed between the two localized electrons
which is essentially decoupled from the conduction band.
For eo + 3J/4, the free spin on the other localized state is
strongly screened by the formation of a virtual singlet
with virtually excited electrons on state eo, so that the
Kondo effect is suppressed. The resulting "resonance"
peak in transmittance shows the crossover between these
two regimes as eo is varied. The line shape is non-
Lorentzian and is insensitive both to changes in tempera-
ture (for To&I ) and magnetic field (2pa8« J), be-
cause the energy scale is now set by J, but not the Kondo
temperature TK. Thus in order to compare with experi-
ment, it is important to decide whether a given resonant
structure is in the J» I or J« I regime. For exam-
ple, if the length of the barrier can be reduced so that lL

or /tt is less than the typical separation between local
moments, it becomes more likely to be in the J« I"

Kondo-type regime.
In summary, we have studied the effect of Coulomb

correlation in the process of resonant tunneling, using a
1D, one-impurity site model. We have found that in the
zero-magnetic-field case, the resonant transmission pic-
ture of one-particle tunneling is strongly modified. In
particular, the resulting "pseudoresonance" peak in con-
ductance describes the crossover from a high- to a low-

temperature phase of the system, as eo (or the chemical
potential) is varied. The resulting conductance peak is
expected to have a non-Lorentzian line shape, and with
rather unusual temperature dependence. In the presence
of a strong magnetic field (2pa8»I ), the one-particle
resonant transmission picture is found to be valid again.

However, the line shape of the resonant peak is found to
be non-Lorentzian and asymmetric, as a result of
Coulomb correlation. Furthermore, upon application of
a magnetic field the peak simply shifts without any ob-
servable splitting by the Zeeman energy. We also point
out that our description is quite sensitive to exchange
coupling with other local moments which may exist in

the experimental situation.
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