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The interface of an Ising lattice-gas model of ions, driven by an external electric field parallel to the
interface, is studied in two bulk dimensions with extensive Monte Carlo simulations. Even for weak
field, numerical results indicate strong suppression of interfacial capillary-wave excitations. This is qual-
itatively similar to the effects of gravity on fluid interfaces, but some differences are observed in the
structure factors. We argue that the physical picture may apply in general to driven systems in steady

state, and in higher dimensions.
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The physics of surface and interface roughness is an
important and broad subject, relevant to a wide range of
physical phenomena, ranging through roughening transi-
tions,! wetting problems,? crystal growth,* and to spino-
dal decomposition.* In particular, a roughening transi-
tion is believed to occur generally in three-dimensional
(d=3) systems,' where the interface separating the two
coexisting phases becomes rough as the temperature (7°)
approaches the roughening transition temperature Tg
from below. In contrast, for d =2 the interface is rough
at all T>0, i.e., Tr =0. Associated with the divergent
interface width (in the thermodynamic limit) is an
infinite correlation length related to the algebraic decay
of the height-height correlation function. Both the width
and the correlation length become finite when a pinning
field is applied, resulting in a smooth interface.> Com-
mon examples of pinning fields are the gravitational field
in fluids and a magnetic field gradient in magnetic sys-
tems. In most experimental situations, the interface is
influenced to some extent by an external field.

Most of the known results apply only to systems in
thermodynamic equilibrium. However, many interesting
systems are driven by an external field away from equi-
librium. Their properties can be very different. There-
fore the study of the relevance of the external field in the
interface roughening is physically interesting. From con-
ceptual as well as practical considerations, the simplest
system which models such a situation is probably the Is-
ing lattice-gas model of charged particles driven into a
steady state by an uniform external electric field (E)
parallel to the interface.® For some properties of this
model, progress has emerged mainly from computer
simulations. This is due to the inherent difficulties of
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formulating statistical mechanical treatments for none-
quilibrium systems. In both d =2 and 4 =3, phase sepa-
rations were shown to occur below a certain critical tem-
perature.® Such separations are very anisotropic, with
the interface parallel to the field direction, for systems
with periodic boundary conditions. According to these
simulations, the transition is believed to be of second or-
der (at critical density), and the critical properties in
d =2 seem to belong neither to the Onsager-Ising univer-
sality class nor the mean-field one. Qualitatively similar,
though less conclusive results were also obtained in
d=3.7 The nature of the critical behavior is still contro-
versial, as theories predict mean-field behavior,?® dis-
agreeing with simulation results. Below criticality, there
are studies of linear stabilities of the interface based on a
phenomenological theory.’

In this Letter we report the first exploratory study, by
Monte Carlo (MC) simulation, of roughening in such a
model. We present numerical evidence of the suppres-
sion of the interface roughness (in d=2) by E, for a
wide range of values of E. We conjecture possible cross-
over phenomena as the system size L varies; and a possi-
ble phase diagram in the (E,T) plane for the roughness,
based on simulation results and physical arguments. In
the case of E =0, the width squared (w?) in the steady
state is found to scale as L, confirming well-accepted
statics results,'%"'2 and is consistent with the common
belief that the static bulk and interfacial properties in
equilibrium are independent of the detailed dynamics
(e.g., whether the order parameter is conserved or not).

We use the standard MC method'? to simulate the
driven Ising model on a L, XL, two-dimensional square
lattice, using spin-exchange dynamics'4 (locally con-
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served order parameter). [We will use spin or particle
language interchangibly: + (=), spin corresponding to a
particle (hole).] E is chosen to be along the +x direc-
tion (with unit vector X). The spins interact via the usu-
al Ising Hamiltonian H=—JX,,0:0;, where J>0,
o= 1, and the sum is over nearest neighbors. As an
open system, this model is defined, not by a Hamiltoni-
an,® but by the jump rate W: Particle jumps along (op-
posite to) E are enhanced (suppressed) by a factor
exp(EX-4/kgT), with 4 a unit vector along the jump
direction, and kg the Boltzmann constant. In our units,
the zero-field bulk critical temperature is 7,.(0)
~2.269.' We fix all spins on the top (bottom) row as
down (up), and we use periodic boundary conditions
(PBC) along E. Under these boundary conditions, an in-
terface parallel to E is obtained below T.(E).

There are two length scales associated with the inter-
face'®; the intrinsic width, and the “wandering” width
due to long-wavelength capillary-wave fluctuations.
They can be comparable and are not easily separated
near T., because there, the intrinsic width is of the order
of the bulk correlation length &g. For this reason, T
must be low enough for the interface to be well defined;
but if 7 is too low, the dynamics would be so slow that
the simulation would not be practical. Thus, our simula-
tion for the interface is restricted to a limited range of 7.

An interface configuration denoted by {h(x)}, with
h(x) the local height, is defined as follows: After every
certain number (typically 25 or 50) of updates in units of
Monte Carlo steps per site (MCS), we coarse grain a
copy of the spin configuration, in order to average out
small-distance (or order £p) fluctuations to remove bub-
bles in the bulk and overhangs near the interface. Hence
a single-valued function A (x) can be defined simply as
the total number of up spins in the column x. Our simu-
lation is thus in the same spirit as the capillary-wave
theory, which treats a fluctuating interface with an in-
trinsic width.'® This enables us to compute the local
height-height correlation function C(a)=([r(y)—h(y
+a)1?) and the average width squared w2={(h —(h))?)
whose dependence on L, is of primary interest. Here ()
denotes the ensemble average in steady states. All sys-
tems studied here are half-filled, (h) =L,/2. Note that
when E =0, w*~L, ind =2, L, must be large enough to
avoid interactions of the interface with the boundaries.
This is checked by some large-L, test runs. L, is typical-
ly 30 for L, in the range of 30 to 60.

We have performed large-scale MC simulations for
E =0, 0.5, 2, and 50 (effectively infinite and denoted by
o below). Because of the limited accessible range of T
as mentioned above, simulations were done only at
T=0.75T.(0) for E=0 and 0.5, and T=0.97.(0) for
E =2 and 50. To overcome very long interface relaxa-
tion times, long runs (by usual MC standards) are need-
ed to generate meaningful samplings. This restricts the
sizes studied: L, ranges from 10 to 60. Typically a run
lasts from 0.5 to 2x10% MCS (longer for smaller E).

Each data point in Fig. 1 is an average over three or four
independent runs.

Since small-F runs are extremely time consuming, for
practical reasons we leave the case of 0 < E <0.5 for fu-
ture studies. The following results therefore do not in-
clude the case of very small E. Since E is measured in
units of bond strength, £ =0.5 can already be regarded
as small.

There are several possibilities for the behavior of the
width squared w2(L,E): (1) w?=A,L,, with an E-
dependent amplitude A,; (2) nonuniversal behavior of
the form w2~L?%®) with an E-dependent exponent'’;
and (3) w? saturates to a finite value as L, increases, re-
sulting in a smooth interface. We have plotted w2 vs L,
in Fig. 1. We have also plotted w? vs LZ for various trial
p’s. This is more reliable than log-log plots. For all the
finite E’s studied, the best straight-line fits apparently
occur at p < 1. This rules out possibility (1). For large
field, the curvature of such plots persists even for very
small p (see, e.g., the inset of Fig. 1). This implies,
should (2) be true, that p(E) would be very small for
strong field. Naturally we cannot completely rule out
possibility (2), since errors are finite and sample sizes are
limited. However, the data are fitted better (more so for
larger E), statistically, by a functional form for the case
(3). Furthermore, additional numerical evidence from
spatial and temporal correlation functions (to be present-
ed elsewhere) and an analogy with gravity on fluid inter-
faces support the last possibility. Because of great
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FIG. 1. MC results, w? vs L, for different E (x =0,

+ =0.5,0=2, and 0=50). The straight line is a linear fit for
E =0, which confirms the well-known scaling of w on L,.
Dashed lines are guides for the eyes. Error bars larger than
the size of symbols are shown. Inset: An example of a plot of
L% vs w? for various trial p’s. These plots provide bounds on
the effective p.
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demand on computational effort, we cannot study with
precisions the behavior of w?(L,,E <0.5). Such low-E
results would be needed to probe the finite-size scaling'®
properties near the possible rough-smooth transition at
E =0. Analysis of our results indicates that even for
E =0.5, the data are outside the finite-size scaling re-
gime. However, should w? diverge, a reasonable upper
bound on p for the smallest E (=0.5) studied would be
0.2 (in contrast to p =1 for E =0).

The numerical evidence that strong E suppresses
long-wavelength, large-amplitude interface modulations
appears to be compelling. One possible physical picture
of this suppression is for E to introduce an effective
crossover length, denoted by Ag, so that w? is finite as
L,— oo, in a way controlled by L,/Ag. To get some
feelings of Ag, we fitted w?l by an exponential form:
A—Bexp(—L,/Ag). We find Ap=17, A=0.31 for
E=o0;, A\g=19, A=1.2 for E=2; and A =30, A4
=~ 3.0 for E=0.5. As expected, Ax and w?(e, E) both
increase with decreasing E. To be consistent with known
results, "' they must both diverge as £E— 0. We get
similar results when the data are fitted with an arctan
functional form as predicted by capillary-wave theory for
an interface stabilized by gravity.

For E =0, the long relaxation time poses the most
serious problem. Errors are large, in spite of very long
runs (2x10® MCS). Fitting the data as above gives
p=1.0%£0.1."° This confirms the d =2 results obtained
by various other means.'%"'> Besides computing w? us-
ing h(x), we have also used other independent measure-
ments: one is Cmax =C(L,/2); another is the second mo-
ment of the gradient of the density profile m(y)
=(1/L,)X, o(x,y). Both give similar results and sup-
port our interpretation.

The structure factor G(q,E) is defined as the Fourier
transform of the two-point correlation function
(h(x)h(0))—(h)% Figure 2 exhibits the divergence of
G(q— 0,E =0), representing long-range correlations
(equivalently Goldstone modes) along the interface.?
Numerically, the data give a 1/g> dependence of
G(q,E =0). Results for E=0 clearly display deviations
from pure 1/¢% dependence as ¢g— 0. The limitation in
system size prevents us from probing this limit further.
Even with q,%,in = (.01, the data cannot unambiguously
determine whether there is a gap at ¢ =0 (as for gravity
alone),’ or just a weaker divergence than 1/g2 This
question deserves further studies.

It is by no means obvious, though physically reason-
able, that E suppresses capillary-wave excitations to pro-
duce a smooth interface. Gravitylike external fields pro-
duce a similar effect,® with the capillary length playing
the role of Ag. Although both are symmetry-breaking
fields (with respect to Ising and rotational symmetries),
pulling particles one way and holes the other, the direc-
tions in which they act on the interface are orthogonal.

Although we have not formulated a complete theory
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FIG. 2. MC results for the inverse of the structure factor,
G 7', vs g% Note the linear approach to g2=0 for E =0, and
the differences for Es#0. Meaning of symbols are the same as
in Fig. 1.

for the effects of E on interface roughness, we can never-
theless give some heuristic arguments. The time scale
for the decay of a long-wavelength (g ~'=A>¢&3) fluc-
tuation away from planar interface is of the form”®

t(\E) T2 = Db+ D¢ 3 (g +Ae D),

where Az < 1/E, and D is the diffusion coefficient. Thus,
to=A3 for E=0 and 7z =~ (\’Ag)"? for large E=O0.
Comparing these, we get to/tz ~ WE) "2 Our interpre-
tation is that E destroys large fluctuations quickly, re-
sulting in an essentially smooth interface beyond the
crossover wavelength Ag, at which 7o/t(A =Ag,E)~1.
This essentially expresses the fact, as observed from the
evolution of the interface in simulations, that large-
amplitude modulations are very difficult to create, since
particles near the interface are constantly driven along
the field, effectively suppressing such formations. On the
basis of these arguments, we speculate that the interface
is smooth for any E#=0, probably for all T < T.(E),
analogous to the effects of gravity.

We end with two remarks. First, the above description
is likely to apply to a wide range of nonequilibrium sys-
tems, driven into a steady state by an external field.
Second, the results can easily be generalized to d > 2. It
is especially interesting in d =3 where 0< T <T..!
Since that transition is very delicate (being of infinite or-
der), one would expect the effects of E to be more pro-
found. We hope that this exploratory study will stimu-
late further experimental and theoretical investigations.
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