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Cascade and Intermittency Model for Turbulent Compressible Self-Gravitating Matter and
Self-Binding Phase-Space Density Fluctuations
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A simple physical model which describes the dynamics of turbulence and the spectrum of density fluc-
tuations in compressible, self-gravitating matter and self-binding, phase-space density fluctuations is

presented. The two systems are analogous to each other in that each tends to self-organize into
hierarchical structures via the mechanism of Jeans collapse. The model, the essential physical ingredient
of which is a cascade constrained by the physical requirement of quasivirialization, is shown to exhibit
interesting geometric properties such as intrinsic intermittency and anisotropy.

PACS numbers: 52.35.Ra, 51.10.+y, 97.10.Bt, 98.40.—p

A series of recent numerical simulations by Berman,
Tetreault, and Dupree' has provided compelling evi-
dence for the existence and importance of nonlinear,
ballistic (i.e., nonwavelike) fluctuations in a turbulent,
collisionless plasma. These fluctuations, which have
come to be dubbed "clumps, " can take the form of ei-
ther enhancements or depletions (holes ) in the phase-
space density. In the form of depletions, phase-space
density structures exhibit a disposition toward self-
binding, while in the form of enhancements, such materi-
al self-repels and fills the interstitial region between
holes. The simulations in question, which are of an un-

magnetized, single-species plasma, track the evolution of
an initially periodic "checkerboard" distribution of local
excesses and cavities of charged particles in one-dimen-
sional phase space (i) under the influence of their own
forces (a situation referred to as decay turbulence), and
separately, (ii) under the action of an externally imposed
electrostatic field spectrum (forced or driven tur-
bulence). The decay turbulence was observed to evolve

along two disparate time scales: On a fast time scale,
the initial, ordered arrangement degenerated into a fully
turbulent, random distribution of hole sizes ranging from
the initial structural dimensions down to the smallest
resolution of the simulation. On a longer time scale,
coalescence of holes took place, leading asymptotically in
time to a spatially intermittent distribution of a few deep
(i.e., large amplitude) phase-space holes, with small-
amplitude, positive fluctuations filling the interstitial re-
gion in between. The probability of finding a fluctuation
in a phase-space cell was found to become more skewed,
both in time and with decreasing size, in favor of nega-
tive fluctuations. In simulations of forced turbulence,
the initial structures were similarly observed to fissure
into a distribution of diA'erent size holes; however, for the
forcing function chosen, the probability distribution
remained Gaussian. The similarity between these pic-
tures and corresponding simulations in fluid turbulence
is striking, and suggests a more profound affinity be-
tween the two disciplines than heretofore expected on the
basis of the traditional paradigm of a plasma as a system
of interacting waves and discrete particles. In this

Letter, we propose a simple dynamic model with which
one can explain the genesis of holes over a hierarchy of
scales, together with their intermittent distribution in

phase space, by interpreting the self-trapping tendency
of holes in terms of proximity to Jeans marginality. By
way of motivation, we shall first apply the model to
compressible, self-gravitating matter, thus attempting to
describe some of the observational evidence for the
velocity-dispersion-density-length-scale correlations and
morphology of molecular clouds in the interstellar medi-
um (ISM).

Observations of large density fluctuations and super-
sonic internal velocity dispersions (inferred from molecu-
lar spectral emissions) have confirmed that the ISM is

strongly compressible over a wide range of scales [0.1 to
200 pc (pc denotes parsecs)]. " Moreover, the self-
gravitational force which operates between clouds over
all scales is believed to play a pivotal role in regulating
the dynamics of the ISM. Magnetic fields and stellar
winds are potentially important additional ingredients to
this overall picture. The cloud complexes observed have
an embedded, hierarchical organization and display
windswept, filamentary or ribbonlike structure down to
the smallest observable scale. As first noted by Lar-
son and confirmed by several later studies, the avail-
able data manifest a remarkable power-law correlation
among the velocity dispersion v, the density fluctuation

p, and the length scale l: v-l, 0.3 &p &0.6, and p-lq,
—1.4 &q & —0.75, spanning three decades of cloud size
(0.1 pc + l + 200 pc), and operative both within an indi-
vidual cloud as well as in between diA'erent clouds. Of
equal significance is the observation that the clouds over
this same range are in approximate virial balance; i.e.,
the kinetic energy associated with their linewidths ap-
proximately balances one-half their gravitational energy.

Elsewhere we shall present a model which seeks to ac-
count for all the various features discussed above. In or-
der to motivate the scenario of proximity to Jeans mar-
ginality, however, a simplified version ignoring magnetic
fields and stellar-wind sources will suffice here. Con-
sistent with observations of supersonic flows, we envision
the ISM as a turbulent, driven system, with energy being
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injected at the largest scales by hydrodynamic sources,
such as the shear associated with differential galactic ro-
tation, ' or the subscale instability of spiral density
waves. The energy is then transferred from large to
small scales in a two-stage cascade sequences":

(i) Catastrophic or collapse phase .O—n a fast time
scale, a given cloud, being strongly Jeans supercritical
(see discussion below), undergoes gravitational collapse.
In the process of the collapse, the change in the gravita-
tional energy is channeled into random or turbulent ki-

netic energy until a quasivirialized state is achieved
where the turbulent stresses thus generated balance the
gravitational force, and bring the collapse to a halt.

(ii) Inertial cascade phase O.n—a longer time scale,
the cloud fragments into smaller subconstituents by the
shearing action of tidal forces. These fragments no
longer have sufficient random kinetic energy to support
against free-fall collapse, and the process repeats itself.
This scenario continues onto the smallest scales in the
hierarchy (-0.1 pc) at which point clouds become sub-
sonic and thermalize into the ambient intercloud gas.

It is conjectured that, superposed on the large-scale
flow, supersonic shock motion induces a progressively
more localized and patchy distribution of dissipation.
We then have a fractally homogeneous turbulence situa-
tion, the essence of which is adequately captured by the
absolute curdling or P model of Mandelbrot' and
Frisch, Sulem, and Nelkin. ' This model modifies the
Kolmogorov cascade (fragmentation) sequence to allow
the eddies (clouds) at each step n of the hierarchy to fill

only a fraction, P = (1„/1„-~
)", of the preceding

generation's volume, assuming that the largest eddies
(clouds) were space filling. The exponent appearing in
the expression for P, i.e., tt =d —D (where d=3 is the
topological or Euclidean dimension and D the self-
similarity or fractal dimension), is referred to as the
codimension or intermittency exponent and is a measure
of the degree to which the dissipative structures fill space
(D=d~space filling). Our model differs from that of
Ferrini, Marchesoni, and Vulpiani, " both in our use of
quasivirialization to relate velocity dispersion, density
fluctuation, and length scale together in lieu of an ad hoc
relationship, and also in our interpretation of "active"
and "inert" ("frozen" in the Ferrini, Marchesoni, and
Vulpiani terminology) flow regions. In contrast to the
latter work, we understand active regions to refer to the
molecular clouds themselves as opposed to the ambient
intercloud gas since, relative mass ratios notwithstand-
ing, " it is in the former that the dynamic transfer of en
ergy from large to small scales is taking place.

Quasivirialization can be given a useful interpretation
in terms of marginality with respect to Jeans instability.
The latter expresses the competition between (outward)
pressure or stress forces, and (inward) gravitational
forces:

r 2 (c2+ 2)/12

(2)

where vo=(4nGeio)' and pa=[a lo/(4nG) ]' are,
respectively, the velocity shear and density fluctuation on
the largest scales of the hierarchy. The stronger spatial
correlations manifested here relative to the incompressi-
ble case are due to the added constraint imposed by
quasivirialization. That the latter can be interpreted as
an internal energy injection mechanism is sustained upon
noting that the spectral quantity' E(k)—:pv /
1t'cck 7ts is flatter (i.e., more energy content at each
scale size) relative to the corresponding incompressible

(p =const) energy spectreum E(k) cx' k . The v

spectrum itself, which is proportional to k
shows remarkable resemblance to a spectrum of random
shocks (cL'k ). It remains to determine the fractal di-
mension D. In the absence of a systematic procedure, a
bound on D may be obtained with the information-
theoretic arguments of Mori and Fujisaka. " Identifying
the fraction of space occupied by all the n-clouds with
the probability 9 that a given volume is active, it is pos-
tulated that this probability takes on a value such as to
maximize the information entropy of intermittency,
defined by & = —Ping —(1 —P)ln(1 —7). The result
is p = —, log~(2JV t —1)——,', where JV =(1„-~/1„) is

the number of offspring clouds per generation. Since
& ~ JV'~ 1, it follows that 0~ p ~ 3 or —', ~D~ 3.
This is, at best, consistent with the observational evi-

dence that clouds have a filamentary or ribbonlike struc-
ture (i.e., 3 & D & 2), but any more quantitative compar-
ison would be unwarranted. Finally, the theory allows us

to estimate the spectral mass function N(m), defined as

where y is the (exponential) growth rate, r, = (4npG)
is the gravitational collapse time, 6 is the gravitational
constant, c, is the sound speed, and v is the internal tur-
bulent velocity shear of the fluid. The marginal state, for

strongly supersonic velocity shears characteristic of the
observations (v»c, ), corresponds precisely to what we

mean by quasivirialization, i.e., v-I/r, »c, . Modeling
the ISM as an intermittent (i.e., non-space-filling)
hierarchy of quasivirialized clouds, we can identify four
relevant time scales in the problem: (i) the local shear-

ing time r„'=I„/v„(where the subscript n refers to the
hierarchy level), (ii) the interpatch shearing time
r„'=((Bv/Bx) ) 't -P„'t z„' & r,' (() denotes a spatial
average), (iii) the collapse time r„and (iv) the dissipa-
tion time r„=l„/v, where v is the viscosity. The inter-

patch shearing time increases with decreasing scale size,
and is thus dynamically irrelevant since it is less efficient
in decomposing clouds than local tidal disruptions. To
account for the fact that the clouds are compressed at
each stage, the Kolmogorov argument needs to be
modified to consider energy transfer per unit volume, i.e.,

e =P„dE„/dt —P„p„v„/r„' = e =const,

with the quasivirizalization relation, p„-v„/4nGl„,
entering as a constraint. We then obtain

v„/vp —(1„/1p) ",p„/po —(1„/1p)

1717



VOLUME 61, NUMBER 15 PHYSICAL REVIEW LETTERS 10 OCTOBER 1988

y' - top'fav/ep —k'(av ) ', — (s)

where fp =e(k, 0) 1+(kkD), and XD- v, /to~ is the
Debye shielding length. Equation (S), which should be
compared with Eq. (1), expresses the competition be-
tween the self-trapping tendency of negative fluctuations
or phase-space density holes (f & 0), and the shearing
action of repulsive electrostatic forces. The balance be-
tween these two forces, i.e., f= —ephv/co~(hx), is the
phase-space analog of quasivirialization. For a turbulent
distribution of phase-space density structures to be able
to coexist, it is necessary that a given hole not be tidally
disrupted under the electrostatic straining deformations
of all the other holes. Implicitly assumed in the theory,
therefore, is that the self-trapping time rt (Ax/Av) ff

is comparable to the turbulent decorrelation (clump )
time r,i=(hx/dv)&„, b„i,„t. As we are interested in fluc-
tuations with initial spatial dimension larger than the
Debye length (it is only for such fluctuations that self-
trapping is significant ), the shielding term eff'ectively
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the number of clouds with mass between m and m+ dm:
t mn

N(m)dm =N„,

where N„ is the number of clouds between spatial size

l„and I„—l. We find N(m) ~m ', where a=1+(13
—6p)/(11 —7p)=2.2. This value is somewhat steeper
than inferences made from observational data (1 & a
& 2) (Ref. 6); such inferences, on the other hand, are

open to interpretation, and have large error bars associ-
ated with them.

The physics of collisionless plasmas is described by the
Vlasov equation augmented by Poisson's equation to en-

sure self-consistency:

df/dt Bf/rlt+ v rlf/Bx —(e/m)E Bf/Bv =C (f),
(3)

&E/Bx =4ttne(l —
~ dvf),

where f is the normalized electron phase-space distribu-
tion function, E is the electrostatic field, 8(f) is the
Fokker-Planck collision operator [8(f)=0 for a col-
lisionless plasma; we include it here to motivate the ter-
mination of the cascade process), n is the density, and e
and m are the electron charge and mass, respectively.
Immobile ions assume only a background-neutralizing
role and affect dynamics only through Poisson's equa-
tion. With the assumption of a phase-space density fluc-

tuation of size f, with velocity spread hv and center-of-
mass speed u & v, (v, is the thermal speed), a dispersion
relation can be straightforwardly derived from Eq. (3):

(co ku)'=k'(—av )'+ copfav/e(k, ku), (4)

where e(k, )to1+(to~/k)P Jdv rlfp/rlv(to —kv) ' is

the plasma dielectric function which shields fluctuations,

fp is the equilibrium distribution function, and P denotes

a principal value. Transforming to the fluctuation rest

frame, the Jeans-instability criterion for a collisionless

plasma becomes

truncates all scales hx )XD to kD and the quasivirializa-
tion condition reduces to the simple form f= —Av/v, .

Equation (3) expresses the conservation of phase-
space density fluctuations along particle trajectories.
The mean-square fluctuation density is therefore a quad-
ratic invariant of the collisionless system. When left to
evolve self-consistently under their mutual interactions,
phase-space density fluctuations "fissure" by ballistic
streaming and velocity-space diffusion. This is best illus-

trated by the evolution equation for the two-point corre-
lation function ':

(e, +v a„—a„, n a„—e)&af(I)bf(2))=0,
where

$(x—) (e/m) „dk[1—cos(kx )]gk k„& iE i )t, , k„,

-&av '&/r

is the velocity-space diffusion coefficient, gk „ is the re-
normalized temporal propagator, and (x,v- ) = (x i
—x2, vl —v2) is the phase-space separation between the
two points (x|,vl) and (x2, v2). In words, successively
smaller scale fluctuations will be generated through elec-
trostatic straining deformations and consequent phase-
space gradient amplification of hole structures. This is
an autonomous process in the sense that it evolves self-
consistently without the need for an external free-energy
source. There is an alternative perspective on the prob-
lem, originated by Saffman in the context of 2D Navier-
Stokes turbulence, ' which focuses on discontinuities in

the fluctuations as providing the dominant contribution
to the inertial range spectrum. Indeed, phase-space ad-
vection can be expected to bring chunks of fluid of vary-

ing f together at neighboring points, leading to the
creation of quasidiscontinuous boundary layers. This ar-
gument leads to a k 2 spectrum for phase-space density
fluctuations, and can be expected to determine the very

early phase of the temporal evolution. However, the in-

compressibility of the flow precludes the interpenetration
of phase-space quasidiscontinuities, and as they pile up,
the longer-time evolution can be expected to proceed by
a cascading of phase-space density fluctuations from

large to small scales.
Assuming a hierarchy of quasivirialized (i.e., self-

trapped) phase-space density holes, we assume a station-
ary process whereby the fluctuation density available in

large holes is transferred self-similarly to small holes at a
rate characterized by the inverse trapping time,
r„=h,x„/Av„. Since the nonlinear cascade can neither
create nor destroy fluctuation density, the rate of
transfer must be constant and given by g=f„/r„=const.
As in the case of compressible self-gravitating matter,
the cascade is constrained by quasivirialization. This
constraint, which implicitly "slaves" the spatial and ve-

locity dimensions of phase space to each other, suggests
that the cascade can equivalently be thought of as a suc-
cessive sequence of reduced spatial scales, or as one of
reduced velocity scales. The cascade terminates when
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the nonlinear transfer term becomes comparable to the
Fokker-Planck term, which in magnitude is of order
v(v, /hv) f, where v is the electron collision frequency.
A Reynolds-type number, =, characterizing the ratio of
dissipative to nonlinear trapping time scales, can then be
usefully defined::- =(Av) /vv, Ax. In terms of the free
parameters of the system, the dissipative scale may thus
be determined: (Axd, t5, Ud) =(v /g v, , v/gv, ), and the
number of excited degrees of freedom (ignoring the pos-
sibility of attractors) is given by hxpt5vp/Axdhvd== .
In the inertial range, where dissipation is subdominant to
the nonlinear coupling term (i.e., "»1), we obtain the
following scaling laws:

hv„/t5, vp (Ax„/Axp), r„/rp (t5,x„/Axp)

F(k) —(g/U ) k (6)

where hvp- ((v, exp) 'I, rp- [(exp) /gv, ] 'I, and F(k)
is the spectral fluctuation density. The resemblance to
the Kolmogorov scaling in 3D Navier-Stokes turbulence
is purely coincidental and a direct outcome of the
quasivirialization constraint. Other hole properties, such
as hole mass and energy spectrum can be easily derived:
mt, -((U')''hx'' and Et, (k)-mn(('Ut')''k ' '. lt
should be borne in mind that neither hole mass nor hole
energy is conserved from one hierarchy level to the next,
but in fact is lost to the interstitial region between holes
in the process of hole splitting.

A novel feature of this hole mitosis model is its intrin-
sic intermittency and anisotropy. This is due to the fact,
mentioned earlier, that the velocity dimension of the hole
structure is slaved to its spatial dimension through the
quasivirialization constraint. Thus, for example, if a
hole halves its spatial extent, its width in velocity space
must adjust by a factor of 2'I (2 in order for it to
remain self-trapped. An immediate consequence is that
succeeding generations of holes fill less and less of the
area in phase space available to them, and an initially
space-filling distribution of large holes evolves into a
patchy, anisotropic pattern of quasi-one-dimensional
structures whose velocity dimension is highly elongated
relative to their spatial extent. This explains the numeri-
cal observation that skewness, defined by S=(f )/
(f )3I, increases both in time and with decreasing scale,
signifying increasing deviation from a Gaussian distribu-
tion. Semiquantitatively, if we choose to adopt —', as a
convenient definition of the dimension of phase-space
holes (hole area hxhv tx:Ax I ), and follow through
with arguments similar to those given in the first part of
this Letter, we obtain a self-similarity dimension D equal
to unity, as suggested by the preceding physical argu-
ment. The intrinsically non-space-filling character of
hole evolution is indeed what is responsible for the nonin-
variance of hole mass and energy.

In summary, we have presented in this Letter a simple
dynamical model of hole mitosis to account for the early

evolution of phase-space density fluctuations in a Vlasov

plasma. The long-time evolution, which is characterized
by coalescence phenomena, is not addressed by this pic-
ture. The model, the essential ingredient of which is a
cascade constrained by the physical requirement of
quasivirialization or self-trapping, exhibits interesting
geometric properties such as intrinsic intermittency and
anisotropy. A variant of the model holds promise for ex-
plaining certain features of compressible self-gravitating
matter in the ISM. Further details of the latter will be
presented in a forthcoming publication. It should be
remarked that while these ideas do not necessarily carry
over to 3D unmagnetized plasma turbulence, they can
well be applicable to a strongly magnetized situation in
the direction along the fteld; E&& B transport would then
be expected to determine cross-field plasma dynamics.

This work was supported by U.S. Department of Ener-

gy Contracts No. DE-F603-85ER53199 and No. DE-
FG03-88ER53275. Useful discussions with Dr. A.
Pouquet are gratefully acknowledged. One of us (H.B.)
has also benefitted from discussions with Dr. J. McWilli-
ams, Dr. U. Frisch, Dr. J. Leorat, and Dr. T. Passot.

'R. H. Berman, D. J. Tetreault, and T. H. Dupree, Phys.
Fluids 26, 2437 (1983).

zT. H. Dupree, Phys. Fluids 15, 334 (1972); T. Boutros-
Ghali and T. H. Dupree, Phys. Fluids 25, 1839 (1981).

H. L. Berk, C. E. Nielson, and K. V. Roberts, Phys. Fluids
13, 980 (1970).

4T. H. Dupree, Phys. Fluids 25, 277 (1982).
5J. C. McWilliams, J. Fluid Mech. 146, 21 (1984).
J. M. Scalo, in Protostars and Planets II, edited by D. C.

Black and M. S. Matthews (Univ. Arizona Press, Tucson, AR,
1985), and in Interstellar Processes, edited by D. J. Hollen-
bach and H. A. Thronson (Reidel, Dordrecht, 1987).

7F. O. Clark, P. T. Giguere, and R. M. Crutcher, Astrophys.
J. 215, 511 (1977).

M. Perrealt, E. Falgarone, and J. L. Puget, Astron. Astro-

phys 152, 371 (1985).
R. B. Larson, Mon. Not. Roy. , Astron. Soc. 194, 809

(1981).
'PR. C. Fleck, Astrophys. J. 246, L151 (1981), and 272, L45

(1983).
' ' F. Ferrini, F. Marchesoni, and A. Vulpiani, Astrophy.

Space Sci. 96, 83 (1983), and Phys. Lett. 92A, 47 (1982).
' B. B. Mandelbrot, in Turbulence and the Navier-Stokes

Equation, edited by R. Temam (Springer-Verlag, Berlin,
1976), p. 121.

' U. Frisch, P. L. Sulem, and M. Nelkin, J. Fluid Mech. 87,
719 (1978).

'4Note that E(k) is not the true energy spectrum as there ex-
ists no Parseval's relation for pv .

'5H. Mori and H. Fujisaka, Prog. Theor. Phys. 62, 54 (1979).
' P. G. Saff'man, Stud. Appl. Math. 50, 377 (1971).

1719


