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The Dirac equation for hydrogenic atoms has a well known instability when za & 1. A similar insta-
bility occurs for the "relativistic Schrodinger equation" with p /2m replaced by (p c +m c ) 't —mc
at za =2/tr. These instabilities concern only the product za, but when the many-electron-many-nucleus
problem is examined (in the relativistic Schrodinger theory) we find that a bound on a alone (inde-
pendent of z) is then required for stability. If a ( 1/94 we find that stability occurs all the way up to the
critical value za=2/n, whereas if a & 128/15n then the system is unstable for all values of z. Some im-

plications of these findings are also discussed.

PACS numbers: 03.65.—w, 11.10.—z, 12.20.Ds, 31.10.+z

With the discovery of the relativistic Dirac equation
for the hydrogen atom came the realization that quan-
tum mechanics requires a bound on the fine-structure
constant a e /hc. More precisely the product za
(where z is the nuclear charge) cannot be greater than
one for, as many textbooks tell us, the Dirac operator is

ill defined (i.e, it has no self-adjoint extensions) when

za&1. There are, of course, corrections to this simple
Dirac picture which might prevent collapse when za & 1;
these include the nuclear motion (which smears out the
Coulomb singularity) and numerous quantum electro-
dynamic (QED) effects. The point, however, is not that
the collapse can be ameliorated but rather that the world

of ordinary matter as we know it is radically different
when za&1. Instead of the Bohr radius being the
relevant length scale, the radius of a nucleus or the
Compton wavelength of the electron or some other small

length scale becomes relevant. It is far from clear
whether or not there is a true "phase transition" associ-
ated with some critical value of za=1, but in any case it
is likely that there is a dramatic change in the physics of
matter. Current experiments with the collision of heavy
ions are now being undertaken to elucidate this realm of
za& 1.

Now let us pose a question that should have been
asked at the beginning, but to our knowledge was not
—possibly because its precise formulation and its answer
were difficult. Suppose that there are K&1 nuclei of
charge z and located at distinct points Ri, . . . , Rg E R .
Suppose each nucleus is subcritical, e.g. , z =1, a= l37,
but ECza & 1. We assume the customary approximation
that the nuclear masses are infinite and we suppose there
is only one electron. For each choice of distinct, Rl,
. . . ,R~ there is no problem, but there definitely will be a
problem if we permit the nuclei to come together at a
common point R, since the electron will then feel an at-

V„,=—(za) '1

a 1 ~i (j~k
From (1) we expect that when za is fixed it will be
necessary to require a to be sufficiently small if V„p is to
prevent collapse. Thus, stability of ordinary quantum
mechanics (with relativistic kinetic energy and without
nuclear motion) somehow sets an a priori upper bound
on the fine-structure constant. We emphasize that this
bound is intrinsically a many-body effect. Suppose one
allows z to be very small (nonintegral). Then one-body
stability will only set a bound on az and a can be very

big provided z is correspondingly small. The above dis-
cussion suggests that a must be kept small independent
of the value of z; in short, many body stabilit-y sets a
bound on a alone which is independent of z

If a is larger than a certain critical value (which we

estimate below) then electrons will bind nuclei together.
The nuclei will be prevented from coming to a single
point because of nuclear forces, but the implication of
this binding for nuclear physics would be the following.
For small a, nuclei can have only a finite size because of
Coulomb repulsion, i.e., infinitely extended nuclear
matter does not exist. With a sufficiently large, however,
the presence of electrons would stabilize nuclear matter
of arbitrarily large size.

traction Kza/r with Kza & l. By length scaling one sees
that, from the point of view of the electron's energy, it is
favorable for the nuclei to do this.

The question is then, within the framework of ordi
nary quantum mechanics (without invoking ftnite nu

clear mass and QED sects) what prevents the nuclei

from coming together and forming some kind of "sink"?
The answer, presumably, is the nuclear-nuclear

Coulomb repulsion which can be written (with lrt =c =1,
which we assume henceforth) as
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It is the purpose of this Letter to announce several re-
sults of ours which make the above considerations more
precise. The details appear elsewhere. '

We are not aware of the existence of any truly relativ-
istic formulation of many-body quantum mechanics and

among the many possible caricatures of such a theory we

have adopted the simplest possible one which displays
the essential feature of relativistic kinematics, namely
the replacement of p /2m by (p +m )'t —m. We do
not try to deal with the Dirac operator p', not because it
is too complicated but because the Dirac operator plus
potential is not bounded below. We are unable to deal
with the question of filling the "negative energy sea"
—and it is not even clear how to do so precisely in the
many-body context. We want to deal with a well defined
Hamiltonian and be able to use the variational principle
for the ground-state energy in order to decide unambigu-

ously whether this ground-state energy is finite or wheth-
er it is —~.

Our choice for the kinetic-energy operator for N elec-
trons is

N

T = g (p'+ m ') ' ' —m (2)

with p = —V acting on ordinary scalar valued func-
tions which satisfy the Pauli principle. This T is well

defined as a multiplication operator in Fourier space. It
is then well defined in position space although it is highly
nonlocal.

Our Hamiltonian is then

H=T+aV, (3)

where V is the Coulomb potential

1 ~i & j~lV

N K
' —2 Z lx —R, Ii=1j I

+ g zz fR; R I—
1 ~i &j~K

(4)

Here, the x s are the electron coordinates and the z s

are the nuclear charges. Neutrality is not assumed.
Our H has many obvious shortcomings, but we remind

the reader that a similar choice was made by Chan-
drasekhar to explain the collapse of white dwarf stars.
In that case one replaces a by G(M/z) (with M=nu-
clear mass and z =nuclear charge) and V by the attrac-
tive gravitational energy —$i ~ &z ~x I x; —

x~ I

The resulting theory is at least qualitatively correct and
it has been shown rigorously, " that the conventional
mean-field analysis of the gravitational H is indeed
correct in the physical limit G (M/z ) 0 and
N G (M/z ) fixed.

Clearly, a more realistic model for white dwarfs is the
Hamiltonian H in (3) plus the gravitational energy. The
critical mass in this model is thought to be only slightly
different from the Chandrasekhar value by a term of or-
der a. Some rigorous bounds for this critical mass are

given in Ref. 6. Our study of the Hamiltonian H could
also be viewed as a first step toward a rigorous under-
standing of this model.

Returning to (3), we define the ground-state energy
for fixed R sby

EN, K(R1 ~ ~ RK) =inf(v I H I y&/(y I w&, (5)

where the infimum is over all ys satisfying the Pauli
principle with q spin states per electron. Of course, q =2
in nature, but it is academically interesting to study the
dependence of the critical a on q. In particular, q =N is
the case of "bosonic electrons. " Next, we define E~ K to
be the minimum of Etv g(R~, . . . , R~) over all choices
of the R s.

There are two simple remarks about EIv ~. (i) Since
I p I

& (p'+ m ') 't' —m &
I p I

—m we see that replac-
ing Tby

N

T=Z lp I, (6)

and H by H-T+aV and Ez tt by Elv r, (analogously
defined) does not change the stability problem. There is

the bound E~K&E~K&E~K —mN. It is convenient
to study Elv r, instead of Etv & because, by simple length
scaling, there are only two cases:

E~ K=0 or

We say that the system is stable if Etv tt =0. (ii) It has
been shown that if there is some number z such that
z; ~ z for all i I, . . . , K and if stability holds when all
the nuclear charges are set equal to z, then stability
holds for the original choice z~, . . . ,zx. Therefore, for
simplicity, we can consider the case that all z; have a
common value z.

We say that the Hamiltonian H (or H) is globally
stable for a given z and a ifE~ tt =0for all choices of N
and K. Otherwise H is unstable. Our goal is to del-
ineate regions in z, a space of stability and instability.

Suppose there is one nucleus and one electron (the hy-
drogenic problem). In this case it has been shown that
stability occurs for E~ & if and only if za ~ 2/tt. This is

just like the situation in Dirac theory (except that 1 is
replaced by 2/n) and the underlying reason for instabili-

ty is the same in both cases; the role of spinors is not
central. In quantum mechanics lp I scales like length
and so does the Coulomb potential. If za(yl lx I

'
I y)

&(yl Ip I I y) for some y, then by length contraction
we can drive E~ K to —~. From this we learn that in

the many-body case we at least require p= (x/2)za to be
at most 1 in order to have stability. The point that was
far from clear is whether global stability can occur for
p=1 and some a & 0, or whether global stability re-
quires a further limit on P (possibly zero).

The first result in this direction was by Daubechies
and Lieb who showed that Ei K is stable for all K if
P ~ 1 and a ~ 1/3z. The first true many-body result was
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due to Conlon' who showed global stability if z =1,
q =1 (q enters now), and a ( 10 . FeA'erman and de
la Llave" improved this to z = l, q =1, and a ( 1/ 2.06tr;
unfortunately, this does not cover the critical case P =1
and, more importantly, it does not generalize easily to
arbitrary q.

We have succeeded in proving stability up to P =1 and

all q by reducing the problem to a tractable one-body
problem. Our main result is as follows.

Theorem l.—If za (2/n and if qa ( 4'7 then H and

H are globally stable.
What about instability? Is it really true that large a

will cause collapse? We have proved two results in this

direction which, when taken together, give a fairly com-

plete picture of the collapse (except for numerical con-
stants).

Theorem 2.—If a) 128/15tr then for every q and

every z & 0, however sma11, H and H are globally unsta-

ble. More precisely, Et x= —~ for some sufficiently

large E (i.e., one electron can make a "bomb").
Theorem 3.—For arbitrary q and z )0, H and H are

globally unstable when a & 36q ' z
A corollary of Theorem 3 is that H is always globally

unstable for "bosonic electrons" for a11 a and z &0.
This follows from the remark that q =N for bosons.

Some slightly more refined estimates are given in Ref.
1, but the main point is that the Coulomb repulsion can
stabilize the many-body system if and only if a is small

enough. When q=2 and za is at its maximum value

2/tr, we have proved that the critical a is between 1/94

and 128/15tr. The exact value is unknown but we would

guess from the kinds of estimates we have used that the
true value is about 1 in the model given by Eq. (3).
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