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Geometric Canonical Phase Factors and Path Integrals
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It is shown that the geometric phase accompanying an arbitrary cyclic change of the state vector can
be naturally understood as a canonical phase term in the coherent-state path integral. The adiabatic
phase is shown to be derived as a part of the canonical phase.
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The geometrical or topological phase factor accom-
panying an adiabatic cyclic change has had an impact on
diverse areas in quantum physics. It was originally in-

troduced in connection with the intersection of molecular
energy surfaces ' and recently formulated in a general
quantum mechanical framework with use of the standard
formulation ' or the path-integral method. This phase
factor has been experimentally detected by the use of,
for example, molecular spectra and optical phenome-
na. '

Very recently Aharonov and Anandan have extended
the concept of this phase to the case where the cyclic
change takes place in a general manner without recourse
to adiabaticity. Garrison and Chiao have applied this
viewpoint to classical nonlinear wave phenomena. '

In this Letter we shall proceed a step further towards
obtaining the geometric phase associated with general
cyclic evolution. This is achieved by use of the path in-

tegral in the coherent-state representation. " ' As a
consequence of this investigation we get a new look at
the generalized geometric phase, which yields the adia-
batic phase in a novel fashion.

We start with a concise description of the phase
change associated with cyclic quantum evolution. '
This is simply defined as the generalized Hill-Bloch law:

l y(t+ T)& =exp(ie) l ttr(t)).

Here
l y(t)) is the normalized state vector satisfying the

time-dependent Schrodinger equation

[ih r)/8t —H(t)) l y(t)& =0.

The appearance of the phase @can be assured by the un-
itarity of the evolution operator U(T, O), the eigenvalue
of which is simply given as exp(i@). In order to evaluate
e, we write

l y(t)) =exp[ —if(t)l l y(t)&, where
l y(t))

satisfies the periodicity condition
l itf(t + T)) =

l itr(t)).
Using the Schrodinger equation we get

df/dt =&/
l

l'i8/8t H(t) l f&, —

and thus

The first term of (2) represents the geometric phase.
The formula (2) is simple enough that one can appre-

ciate its meaning. If we take the adiabatic state for
l y(t)), we get the adiabatic phase. However, there may
be a critical question in the above derivation, the ques-
tion of how one should choose the explicit form of

l y(t)&. The crucial point of the above derivation is the
use of the indefiniteness of the phase inherent in the state
vector. Alternatively, it may be possible to deduce the
geometric phase y in a constructive way without invok-

ing the phase ambiguity. In what follows we shall give
an answer to this problem.

First we shall rewrite Eq. (I) as

& leap l U(T, O) l I/fp&
=exp(ie)

This means that the phase under consideration is nothing
but the transition amplitude for the quantum transition
from the initial state l yp) to the same final state. The
evolution operator is written as the time-ordered product,

U(T, O) =Texp —i H(t)dt/A.
= Q exp[ —iH(k) e/h], (4)

k 1
A

where H(k) denotes the Hamiltonian at t=tk. This in-
volves the time-independent system as a special case,
for which the evolution operator becomes U(T, O)
=exp( iHT/h, ). W—e shall consider the quantum evo-
lution of the system in a Hilbert space labeled by an ap-
propriate complex parameter symbolically written as
[lZ)). We impose a specific property on this space,
nainely, the "partition of unity" (see below). The Hil-
bert space possessing this property may be naturally
realized as the "generalized coherent state" [simply
called coherent state (CS)). The CS is defined on the
basis of the unitary representation of a Lie group' for
which we shall give a quick sketch. Let T(g) be the irre-
ducible unitary representation of the Lie group G and
consider the set [ l g) = T(g) l 0)j, where l 0) is some
starting vector. We define the subset 0 of G such that
for h c 0 the relation T(h) l 0) = (phase) l 0) holds. H
forms a subgroup of G which is called the isotropy group.
Now, for a given point Z of the quotient space G/H
(which is assumed to be a complex homogeneous space),
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we can arbitrarily choose a g 6 G belonging to the coset
corresponding to Z. This choice is not unique, since
g'=gh, for any h E 0, is in the same coset. This corre-
sponds to the choice of a section of the fiber bundle

(H, G, G/H). Then we write I Z) = Ig); namely, for
each Z we can assign a particular state just called the
coherent state. From this construction we see that the
set {IZ)] forms a section of the line bundle over G/H.
It is to be noted that the line bundle is nontrivial and the
section is not continuous in general. Furthermore, the
set of CS forms a so-called "overcomplete set" satisfying
the nonorthogonal normalization condition, namely,
1(Z'

I Z) I
( 1, where the equality holds for the case that

Z'=Z. The characteristic property of the CS thus con-
structed is the partition of unity:

I z&dp(z)(z I
=1, (5)

with the invariant measure dp(Z) on G/H. Here the
existence of the measure is not necessary. If G is com-

pact it exists; otherwise, the integral may diverge. It
should be noted that a sequence of coherent states, say
{I Z ')), . . . , I

Z(" ), . . . , 1, is obtained according to the
choice of the initial state 10). Usually the sequence just
corresponds to the inequivalent class of irreducible repre-

sentations; e.g., for the case of G =SU(2) it is labeled by
the magnitude of spin. Two coherent states may be "un-
connected" if they belong to different "classes" of this
sequence.

Now we define the transition amplitude for the cyclic
change in the CS space:

K(T) =(ZpI +exp[ —iH(k)c/h] I Zp),
k 1

(6)

for the infinitesimal time interval; namely, it represents
the transition from a CS belonging to one class (a) to a
CS belonging to another class (P). The transition occurs
only between CS's belonging to the same class, i.e.,

a =p, since the matrix element between the states be-
longing to different classes vanishes for the case of the
Hamiltonian considered here. In the following we omit
the index a. In the limit of e 0, we have an expansion

where H(t) is given by a function of the generators of G
only, e.g. , a linear or quadratic function, and IZp) is

prescribed to belong to a specific class of the CS se-
quence. We insert the completeness relation (5) between
each product of (6). Thus we have the transition ampli-
tude of the type

(Zk + i I exp [ —tH (k) k/h ] I Zk &

(Zk+ i I exp[ —iH(k) ~/h] I Z, ) =- (Zk+, I Z, ) t (~/—h )&Zk+, I
H(k) I Z, &

(Zk+11Zk&exp[ —t (~/h )&Zk+I I H(k) I Zk)/(Zk+11Zk&], (7)

and hence

K(T) =„Qd (Z„)g&Z IZ & p[ —'( /h)&Z, IH(k) IZ„)/&Z IZ )].
k 1 k 1

(8)

Geometrically, the overlap function (Zki| I Zk) represents the parallel transport of the CS vector at the point Zk to the
CS vector at the nearby point Zk+i. In the gauge-field language, it defines the "connection field" between two nearby
points Zk+1 and Zk. Thus, the infinite product in (8) gives the finite connection along a loop C given by division points

{Zk]. This is just regarded as an extension of the adiabatic connection which is defined as the overlap between neigh-

boring adiabatic levels with the quantum number n, i.e., &n(Xk+i) I n(Xk)). Now, using the expansion'

(zk+i I zk) = 1 l(zk I i h t)/Bt I zk&(e/h) =exp[i(e/h)&zk I i h8/r)t I zk&],

we get the path-integral expression for (8):
pT fO

(Zp I T exp [ i H(t )dt—lh ] I Zp& =
exp [iS (C)/h ]+dp (Z (t ) ), (10)

with the phase term

pT
S= (Z I i h 8/Bt H(t) I

Z)dt-
=r+~.

Equation (10) is an extended form of Eq. (2), nainely,
the summation over all closed loops C. The first term r
gives the geometric phase. Equation (10) is nothing but
the coherent-state path integral previously studied in
several forms, e.g. , the spin coherent state" and unitary
coherent state. ' ' From the path-integral aspect, the

phase S is nothing but the action function; in particular,
the first term of (11) is the one that should be called the
canonical term, and so the geometric phase is alterna-
tively called the canonical phase. In this way we have
nothing new from the path-integral viewpoint, but we

have arrived at a new insight into the geometric phase
for general cyclic change. We shall take this a step fur-
ther.

We shall examine the connection with the convention-
al expression (2). We can get the principle for choosing
the loop C from the path-integral expression (10),
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whereas in (2) we have no way to fix the form of t y(t)&. This may be simply obtained as a consequence of the semi-
classical limit 6 0; namely, the method of stationary phase yields the simple exponential form

(Zp t U(T, O) t Zp& =exp[il (C))exp —— (Z t H(t)
t
Z&dt (12)

The exponent of (12) has the same form as Eq. (2).
However, the closed loop C is determined by the periodi-
city condition Z(r + T) =Z(t) together with the varia-
tion equation 8'S =0 which yields the equation of motion
in the complex parameter space. ' This is just what
determines the geometric phase. We note that (12) may
be regarded as a counterpart of the adiabatic phase
change and this fact implies that the topological and
geometrical structure emerges as a semiclassical limit of
the coherent-state path integral.

Now we consider typical applications of the general
theory. The first example is the spin system which is de-
scribed by the SU(2) CS, the base space of which be-
comes SU(2)/U(1) =Bloch sphere. The SU(2) CS is

given by

tz&=(I+ tz t') 'exp(ZJ+) to&, (»)
where (J~,J, ) denotes the spin algebra and

t
0&

=
t J, —J& denotes the lowest member of the irreducible

representation with weight J. The canonical phase thus
becomes

1~(Z t i h 8/rJt
t
Z&dt

t

together with the periodic boundary condition Z(r + T)
=Z(t). If we use the Stokes theorem, Eq. (14) is con-
verted to the surface integral which is just equal to the
area surrounded by a closed orbit on the Bloch sphere. I
expect that this area may be closely related to the non-

triviality of the line bundle. The extension to a more
general unitary CS may also be interesting; the base
space is the complex projective space P„(C) and the
canonical phase is expressed as an integral of the
differential two form induced by the so-called Fubini-
Study metric. These will be discussed elsewhere.

In the second example we examine how the adiabatic
phase can be derived as a special case of the general
geometric phase. In order to achieve this we note that
the coherent state t Z& gives an approximate state vector
for the many-particle Hamiltonian. ' '3 Let us suppose
that the degrees of freedom may eventually be separated
into two parts, say, "external" and "internal" degrees of
freedom which may be described by g and q, respective-

ly, and the Hamiltonian is given by H= H(og)+h(q, g).
If the external degrees of freedom can be treated as slow

variables, the approximate form of the state vector would
be written as a tensor product

i h J(1+ t
Z t ) '(Z*Z —c.c.)dt. (14)

The integral is taken along the path determined by the
equation of motion

2iJh r)Z/Bt = (1+ t Z
t

') ' rJH/r)Z*, H =(Z
t
H

t Z),

t Z& =
t g&1g t n(g)&,

where t n(g)& stands for the normalized adiabatic level

of the internal Hamiltonian h(q, g) when the external
variable takes the value g and the adiabatic energy is A,„.
Thus the canonical phase becomes

„(Z t i h r)/r)t t Z&dt =„(g t i h r)/Bt t g&dr +„&n (&) t t h a/at t
n (&)&dt.

Hence, we get

t T
5=), t'(& ti h r)/Bt t &&

—Hp —k„+(n(g) tih rJ/re
t n(&)&dr

(16)

(17)

The first three terms of (17) give the external action
function and the last term represents the adiabatic phase
which becomes the topological action to be added to the
external action function. If t (& is eventually given by
the coherent state, e.g. , boson CS for which g becomes
the canonical pair (Q,P), the first term of (16) yields
the kinematical Pfaff form, whereas the second term
leads to the topological phase. In this way the canonical
phase would involve both kinematical and topological
structure simultaneously, which is a significant aspect of
the canonical phase.
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