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Escape from a Metastable Well: The Kramers Turnover Problem
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The thermally activated escape from a metastable well is studied in a region where both recrossing
and depletion effects are important. It is shown that the relevant variable for the escape dynamics is the
energy in the unstable normal mode at the barrier. In terms of this quantity the theory becomes easily
perceptible and allows for a calculation of the escape rate in the turnover region between the low damp-

ing and strong damping Kramers limits.

PACS numbers: 05.40.+j

Almost half a century ago Kramers' studied the
influence of dissipation on the rate of thermally activated
escape from metastable well. In the early description of
escape processes by simple transition-state theory, the
passage over the barrier was pictured as a free flight of a
thermally activated particle. This leads to the well-
known rate formula

I'tst= (wo/Zn)exp( —AU/kgT),

where AU is the height of the potential barrier and wy is
the frequency of small undamped oscillations about the
metastable minimum of the potential well. While the
heat bath is needed to activate the particle, the coupling
strength does not appear in this simplified theory. Based
on a model where the heat-bath coupling causes a fric-
tional force proportional to the velocity of the particle,
Kramers' showed that the escape rate I' is diminished by
a transmission factor k, i.e.,

I'=x(wo/27)exp(—AU/kpT), k<1. )

There are two physical mechanisms leading to this
reduction of the pre-exponential factor of the rate. First,
a particle having crossed the barrier may be scattered
back into the metastable well. This recrossing effect is
particularly important for moderate-to-large damping.
Second, the flow across the barrier leads to an under-
population of the upper energy states in the well. This
depletion effect dominates for very weakly damped sys-
tems where the small coupling to the heat bath admits
deviations from the Boltzmann distribution in the well.
Kramers calculated the transmission factor x under con-
ditions where one of the two mechanisms prevails. The
turnover between the Kramers limits has attracted con-
siderable interest recently,2 in particular since rate ex-
periments are now approaching the high accuracy need-
ed to test theories predicting the influence of damping on
the pre-exponential factor of the rate.

A first attempt to improve the low-damping Kramers
result was made by Biittiker, Harris, and Landauer.?
Afterwards, various authors*> have provided formulas
bridging between the Kramers limits. It is a common
feature of these approaches that the transmission factor

is calculated by two theories valid for weak and strong
damping, respectively, and then the results are combined
to yield an interpolating formula for the full damping
range. In the simplest cases this is achieved by additive
or multiplicative combinations of the two transmission
factors. A truly unified theory of the Kramers turnover
problem avoiding ad hoc assumptions is still lacking.

The conventional description of escape processes ex-
amines the motion of a principal degree of freedom, the
reaction coordinate g, which may be conceptualized as
the coordinate of a particle of mass M moving in a meta-
stable potential U(g) while coupled to a heat bath. Fre-
quently, the particle then undergoes a stochastic process
described by a Fokker-Planck equation. There is a re-
markable range of applicability of Fokker-Planck equa-
tions or the stochastically equivalent Langevin equa-
tions.® In particular, an analog of a particle in a meta-
stable well that follows these equations almost precisely
can be built with a current-biased Josephson junction.’
Previous authors studied the Fokker-Planck process of g
and g in the phase space of the particle or the stochastic
motion of the particle energy E, = ¥ Mg*+U(q). Here
I will show that the relevant quantity is not purely a par-
ticle variable. The escape process is governed by the en-
ergy E in the unstable normal mode at the barrier.
Specifically, I shall consider a system described by the
Langrangian

2
. . i
L=§—Mq2—U(q)+Z_;—mi[qg_wizo[%“ .2q] }’

1

which, in the limit of an infinite set of weakly coupled
bath oscillators, is known to yield for the reaction coordi-
nate g exactly an equation of motion in the form of a
generalized Langevin equation® with a time-dependent
damping kernel

2
1 Ci
(t)=— cos(wjot ). 3)
Y M; miwk 0

Note that the combined effect of all bath modes can
lead to strong damping of the particle’s motion. The
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Kramers model of frequency-independent damping cor-
responds to a specific choice of the spectral density of
bath oscillators.®® Here, I shall treat the general case of
frequency-dependent damping. It is convenient to have
the origin of ¢ and U at the barrier top. Then near the
barrier U(g) = — + Mwfq?, while near the metastable
minimum U(g) = —AU+ 5 Mwd(g—qo)% Following
Pollak,'? I make an orthogonal transformation which di-
agonalizes the Lagrangian in the vicinity of the barrier.
The standard procedure gives

L=1i’+ L 0pu?+Y LGP —wis?) —V(u,s;), (4)
i

where u and s; are mass-weighted coordinates reducing
to normal-mode coordinates in the barrier region. The
unstable mode u has an effective barrier frequency wg
which is just the Grote-Hynes frequency appearing in
the theory of non-Markovian rate processes.>!' For
frequency-independent damping one has wg=(wf
+ 492~ 1y The w; are renormalized bath fre-
quencies and V' (u,s;) describes the nonlinear interaction
between the modes outside the barrier region. Since the
reaction coordinate may be written as a linear combina-
tion of the normal-mode coordinates

q=M—l/2gu [u +Z,~g,-s,~], (5)

we have V(u,s;) =U(q)+ 5 Mwfq?, which contains cu-
bic and higher-order nonlinearities. The following
analysis is fairly independent of the explicit form of the
coefficients characterizing the relation between (3) and
(4) and I shall defer details to a forthcoming paper.

In order to escape from the metastable well, the sys-
tem has to traverse the barrier region. There the total
energy of the system becomes the sum of the energies in
the normal modes. The probability to escape is com-
pletely determined by the energy E in the unstable mode.
When the system approaches the barrier with £ <0, the
u component of the trajectory will go through a turning
point and the particle returns to the well. For E > 0 the
particle will escape with probability 1. Note that the dy-
namics of the particle coordinate g near the barrier top is
stochastic and it may cross ¢ =0 several times, because ¢
contains contributions of all the stable coordinates s;.
The behavior of the u coordinate, however, is always
smooth and regular.

Now imagine injecting particles at a constant rate
near the bottom of the well.! Then the system will ap-
proach a steady-state probability with a constant flux
across the barrier. The flux equals the escape rate I
when the probability is normalized to one particle in the
well. For EsO let f(E)dE be the probability to find
within one unit of time the system in the barrier region
at a turning point of the ¥ mode (at ¥ =0) with a mode
energy between E and E +dE. In terms of this quantity,

1684

the escape rate reads

r=J."dE1(6) 6)

since all particles with E >0 escape. When E <0 the
particle returns to the well where all modes are coupled
and exchange energy. Let P(E | E')dE be the condition-
al probability that a system leaving the barrier region
with normal-mode energy E' will return with an energy
between E and E +dE. For a bath in thermal equilibri-
um, this probability satisfies the condition of detailed
balance

P(E | E")exp(—BE') =P(E'| E)exp(—BE) @)

and it tends to thermalize the distribution f(E). Assum-
ing a Boltzmann distribution of the coupled system (par-

ticle and bath) normalized to one particle in the well one
finds

1 WOWR
27rkBT wp

__AU+E

Sfeq(E) = e

(®)

The algebra necessary to derive (8) is provided by Pol-
lak.'® Because of the flow across the barrier, the
steady-state probability f(E) deviates from (8) and
satisfies

0
& =f__aE'PE|EVfED. ©)

The lower limit of integration can be shifted to —oo
since for E <0 the probability f(E) approaches feq(E)
as a consequence of (7). Near E =0 deviations from (8)
may arise from the absence of inflowing particles with
E'>0.

What remains to be done is to calculate the condition-
al probability P(E |E'). Fortunately, this quantity is
needed explicitly only when the unstable mode and stable
modes are coupled weakly in the well region, because
otherwise the mode energy is thermalized and P(E | E")
has a Boltzmann tail near £ =0. In that case the solu-
tion of (9) is very accurately given by (8). Only when E
remains close to E' will deviations from feq(E) become
important.

From the Lagrangian (4) and the representation (5)
of the reaction coordinate g, the equations of motion for
the stable modes may be written as

5 +owlsi(t) =g FQ), (10)

where F(1) =ii(t) —wku(z) is a “force pulse” which is
nonvanishing only during a traversal of the well region.
For the case of small coupling between the unstable and
the stable modes, F(¢) may be treated as a weak external
force driving the stable modes. The s;(z) trajectories
may then be calculated explicitly as linear functionals of
F(t) for arbitrary initial conditions s;,5; at =0 when
the ¥ mode goes through the turning point. The energy
absorbed by the stable modes is easily worked out. This
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energy is a stochastic quantity since it depends on the initial conditions for the stable modes. When the initial coordi-
nates s;,§; are thermally distributed, the ¥ mode is found to return to the barrier region with an energy E distributed as

P(E |E') =(4rnksTAE) ~2expl— (E —E'+AE)?/4kpTAE], (11)

where

AE = %E,-g,-zj;m dsj;m ds'coslw; (s —s')IF(s)F(s")

is the average energy loss which may be evaluated for
the E =0 trajectory.

Since the distribution (11) satisfies the detailed bal-
ance condition (7), Eq. (9) has a solution f(E) ap-
proaching fe(E) for BE 0. It is convenient to make
the Ansatz f(E)=feq(E)exp(5 BE)¢(BE) which trans-
forms (9) into a Wiener-Hopf equation with a sym-
metric kernel that can be solved by standard methods. '?
From (6) the escape rate is then found to be of the form
(1) with the transmission factor

+°°—dy—1n(1—e"‘“+y2’/“), (13)

c=or o [1
T T 1-+-y2

Wy

where § =AE/kgT. For the Kramers model, Melnikov>
has obtained a related result which differs, however, in
two respects. The factor wgr/w, is absent and AE is
defined differently. Melnikov considers the stochastic
process of the particle energy E,. Because of recrossing
effects his rate expression [corresponding to Eq. (6)] is
only approximately valid and the rate approaches the
transition-state theory result for AE > kgT. The correct
rate in the moderate-to-large damping regime can only
be obtained by an ad hoc multiplication with the corre-
sponding transmission factor. In the normal-mode repre-
sentation recrossing effects are strictly absent. Further,
the energy loss of the unstable mode is very accurately
given by (12) as long as AE < AU, because the u mode
decouples from the other modes in the region of slow
motion near the barrier.

For 6> 1, the transmission factor (13) approaches
Kk =wgr/wp exponentially fast [corrections are of order
exp(—35/4)]. In this region f(E) is very close to feq(E)
and the escape rate is given by the Grote-Hynes theory
result>'%!" which is independent of the precise form of
P(E |E'). Nonequilibrium effects in f(E) are only im-
portant for & of order 1 or smaller. Because of
kT < AU, we then have AE <AU and the approxima-
tion (10) for P(E|E') is sufficient. For 6«1, the
transmission factor (13) approaches x =wgrAE/wpkpT.
A small energy loss always arises in the limit of weak
damping. Using explicit expressions for the coefficients
g: and partial integrations, one can show that to second
order in the coupling constants ¢; the expression (12) for
AFE coincides with the energy loss of the energy diffusion
equation which is usually employed to treat the weak
damping limit.?

(12)

For frequency-independent damping the result (13)
thus describes the turnover between the weak damping
and the moderate-to-large damping Kramers results.

In the general case of frequency-dependent damping,
deviations from the Grote-Hynes theory transmission
factor, k=wgr/w,, we are not restricted to the weak
damping limit. For instance, consider a system with an
exponential damping kernel, y(z) =aexp(—at/y),
where yo=[¢"dty(t) is the low-frequency damping
coefficient. When a < w3, the energy loss AE becomes
small for yo— 0 and also for yp— oo leading to strong
deviations from the Grote-Hynes theory result in both
limits.!> This and other cases will be discussed in detail
elsewhere. In summary, I have shown that the energy in
the unstable normal near the barrier is the relevant vari-
able for the escape problem. In the entire range of
damping parameters, the escape rate can be calculated
from the probability distribution of this quantity in a
unified way.
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