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We show the existence of a generic integrate-and-fire phenomenon which separates the transition to
complete phase locking from the transition to chaos. We argue that our picture provides a natural ex-
planation of "missing' hysteretic bands in the Belousov-Zhabotinskii reaction. In addition, we explain
the origin of experimentally observed "deviations from universality" and bumps in the Arnold tongues in

driven relaxation oscillators.
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Recently, much attention has been devoted to systems
showing the occurrence of entire nonchaotic regions with

complete phase locking. Such regions are observed in a
wide range of biological' and chemical ' systems, in-

cluding neuronal encoding and the Belousov-Zhabot-
inskii reaction. Also, Cumming and Linsay, - studying a
driven relaxation oscillator, have presented experimental
results which suggest deviations from universality in the
transition to chaos. They have determined the position
of several phase-locked regions (Arnold tongues), each
characterized by a certain rational rotation number, i.e.,

ratio between oscillator and drive frequency. Some of
these tongues are shown in Fig. 1. A critical line is

defined, below which no chaotic behavior is present in

the Poincare map (Fig. 2). Along this line (solid line in

Fig. 1) the dimension D of the quasiperiodic set is com-
puted to be D =0.795 which is compared to the dimen-
sion D=0.87 obtained from iterations of ordinary circle
maps at criticality. This dimensionality has been pre-
dicted and found to characterize the quasiperiodic set at
the transition to chaos in a class of nonlinear phase-
locking systems. ' Cumming and Linsay find the line
associated with the dimension D=0.87 (dashed line in

Fig. 1) well below the transition to chaos.
In this Letter we give analytical evidence for a ne~

type of transition from quasiperiodicity to complete
phase locking with no chaos involved. This transition is
a consequence of a generic integrate-and-fire phen-
omenon and manifests itself as a critical line along which
a gap in the Poincare map emerges. Below and at criti-
cality the phase diagram exhibits an ordinary circle-map
phase diagram, for example, a dimension D =0.87 of the
quasiperiodic set at the critical line. Above this line the
phase locking is complete, however, no chaos will occur
before a zero-slope inflection point develops in the Poin-
care map. Universal scaling properties normally charac-
terizing the transition to chaos will be suppressed as a re-
sult of the preceding critical transition, as we shall see.
In particular, the dimension D =0.795 (Ref. 5) is
nonuniversal and a result of the presence of the steep
part in the Poincare map (Fig. 2). Moreover, our pic-
ture explains why bumps are present in the Arnold
tongues (Fig. 1).

To understand the basic idea, we consider a simple
driven relaxation oscillator where the voltage builds up
from a lower threshold TO=0 to a firing threshold T~ =1
following a standard exponential curve,

v = —rv+r.
When I & I, oscillations develop since the voltage
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FIG. 1. Phase diagram of the driven relaxation oscillator studied by Cumming and Linsay (Ref. 5). The rationals in the phase-
locked regions (shaded) are associated rotation numbers. The solid and the dashed lines are explained in the text.

reaches unity and firing takes place resetting the voltage
to zero. We want to study the consequences when this
integrate-and-fire system is driven by a sine wave

U(t) =A sin(2xt). This modulation can be imposed on
the lower threshold, on the upper threshold, or on the in-

put current. Hence, aside from Eq. (1) the system is de-
scribed by the condition

V(t) =t- V(t+) =U(t) (2a)

for the lower threshold modulation, and by the condition

V(t) =I+U(t) V(t+) =0 (2b)

for the upper threshold modulation. For the current
modulation, U(t) is added to the right-hand side of Eq.
(I), leaving the initial firing condition,

v(t) =I- v(t ') -0. (2c)

1.0

0.8-

In order to describe the phase-locking structure, we

determine the functional relation between two consecu-
tive firing times, z + i

=f(z ). However, since the
Poincare map plays a central role in understanding the
transition to chaos and the transition to complete phase

locking, we first elaborate on the connection between f
and the Poincare map. It is known that if this map is

monotonic, the rotation number is uniquely defined (in
this sense there is no chaos); moreover if the map is

(sufficiently) smooth, quasiperiodicity has positive mea-
sure (i.e., no complete phase locking). To use these re-
sults on scaling, it is important to relate the firing func-
tion to the Poincare map, in order to conclude what the
behavior of phase-locking structure is from the behavior
of the firing function. This relation is given below.

The one dimensionality of the Poincare map relies on

the fact that the time evolution of the voltage V(t) after
transients have died away is described by one integration
constant. We take here the integration constant to be a
firing time z. This defines a function V,(t) as the solu-

tion to Eq. (I), choosing V,(z) =1 for the lower thresh-
old modulation and V,(z) =0 for the upper threshold
and the current modulation. Now we define the function

gby (Fig. 3)

g(z) =V,+„(n), (3)

where the periodicity of the solution assures that g is in-

dependent of n, n being an integer. The periodicity also
assures that the firing function is a circle map, i.e.,
f(t + I ) f(t) + 1. We can now write down the relation
between the firing function f and the Poincare map h,
which here is defined as the function V(n) V(n+ I)
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FIG. 2. Poincare map obtained at the transition to chaos for
the driven relaxation oscillator studied by Cumming and Lin-

say (Ref. 5).
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FIG. 3. Illustration showing how g(z) is defined for upper
threshold modulation.
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(see Fig. 3),

g[f"(g '(x)) —1], if 0~x(x*,
h(x) ='

glf"+'(g '(x)) —1], if x*(x(1.
Here, k =[R] denotes the integral value of the rotation
number R. The Poincare map consists of two parts with
h(0) =h(l), and x defined by h(x*) =1 [h(x*+)=0].
The two forms of h(x) correspond to having k or k+1
firings between time n and n+ 1. In Eq. (4) we have as-
sumed that g is invertible. If the rotation number R is
rational, R =P/Q, the relation between h and f, Eq. (4),
shows that a stable q cycle [xo, xi h(xp), . . . , xg —i

=h(x(i 2)] for h maps onto a stable P cycle [yo
-g '(xo), y|=f(yo), . . . , yp-i -f(y~-»] «r f.
Thus, when g has a nonzero slope everywhere, the
phase-locking structure is determined by the circle-map
dynamics of f by inversion of rotation number (this has
no influence on the scaling properties at criticality as re-
gards dimension, decay exponents at the golden mean,
etc.

We now return to our simple driven relaxation oscilla-
tor. For the threshold modulations we find that

(5)

where 8 = 1 for lower threshold and 8 =0 for upper
threshold modulation. We notice that this function has
negative slope for all z (hence, g is invertible). Thus, the
system is characterized by the behavior of the firing
function f. For the lower threshold f is given by

This is a smooth monotonic circle map below the critical
line A=I(4n +I 2)'t, along which f has a zero-slope
inflection point. We conclude that pure lower threshold
modulation reveals ordinary circle-map dynamics, in-

cluding scaling and a transition chaos at criticality.
The situation turns out to be quite different for the

upper threshold modulation. Now it is the inverse of the
firing function fwhich has a simple expression,

f '(r) = r+g '(1+U(t) ).

This expression is of course only valid when the right-
hand side of Eq. (7) is monotonic, which is the case
below and at the critical line A=(I I")/(4z +I )'t-
where f has a zero-slope inflection point. At positive
damping we notice that, increasing the amplitude, this
line is reached before the transition to chaos caused by a
lower threshold modulation. In all, f ' obeys ordinary
circle-map dynamics (including scale) below and at criti-
cality, and this is therefore also true for f. At this point
we emphasize that this criticality gives no occasion for a
transition to chaos. Contrary to the lower threshold
modulation, here some of the threshold becomes "invisi-
ble" for the signal as illustrated in Fig. 4. This leads to a
gap in the firing function f and in the Poincare map h.

T0

{0) (b)

FIG. 4. Time evolution of the voltage V and the threshold
T= 1+U. (a) Below criticality: the slope V at each firing is
larger than T. (b) At criticality: a firing point develops where
V T. (c) Above criticality: certain parts of the threshold can
not contain firing points.

They are, however, still monotonic, and hence, the rota-
tion number is independent of initial conditions. Above
criticality, where a gap is present, the generic behavior at
the borders of the gap is square-root-like on one side
[corresponding to coming from the left in Fig. 4(c)] and
linear from the other side (from which the firing time
jumps abruptly). This is exactly what is observed in Fig.
2, disregarding the smoothness of the real flow which im-

poses a finite (but steep) slope.
From the "cutting" effect by which the visible part of

the threshold shrinks, the origin of bumps in the Arnold
tongues (Fig. 1) also becomes obvious. The tongues
determined by Eq. (7) are cut by the visibility condition
(i.e., the cycle points have to be visible for the signal),
leaving a bump on one side of the tongues. As regards
the quasiperiodic set we know that a discontinuity im-
plies that the measure of this set is zero, 9 i.e., that the
phase locking is complete, and calculations show that the
set has dimension zero. ' However, at a gap size 6 the
stability intervals decay exponentially as (1 —5)~. This
means that the dimension decays toward zero as
D-(1 Qn)/QA, which is a very slow convergence, and
the zero dimensionality will therefore hardly be obtained
from an experiment. The dimension D =0.795 is a mere
result of an arbitrary gap size in the Poincare map and
has no special relation to the transition chaos The true.
dimensionality at this transition is zero, arising from a
preceding criticality The smoothne. ss of a real flow, will,
however, remove this criticality, leaving an ordinary
circle-map scaling. On the other hand, this scaling
structure is in practice not perceivable. Regarding the
actual experimental value D =0.795, we refer the reader
to studies on circle maps with higher-order inflection
points. ' ' From this analysis, which confirms that zero
dimensionality due to a small gap is approached very
slowly, we can understand why a dimension of size about
0.8 and not a dimension close to zero is obtained. More-
over, a change in order changes the golden-mean decay
number"' 8 in accordance with the range in which
Cumming and Linsay find their value of 8'.

Finally, we discuss the current modulation. Solving
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Eq. (I) with U(t) added on the right-hand side yields

I'he function g is monotonic only below the critical line
2 =I, determined by g "(r) =g'(r) =0, where the signal
has zero slope somewhere at the lower threshold. Along
this line g gives occasion for an ordinary transition to
chaos. However, this transition is again preceded (at
smaller amplitudes) by another criticality related to the
firing function. We get

which is valid to the point where the right-hand side be-
comes noninvertible. This happens when g"(r)
=I g'(z) = —I e ', giving the critical line 2 =I —I.
Along this line the signal attains zero slope somewhere at
the upper threshold, while above the signal becomes non-

monotonic, leaving a gap in the firing function and in the
Poincare map. Thus, the current modulation separates
the transition to complete phase locking and the transi-
tion to chaos. At the first transition the quasiperiodic set
has dimension D =0.87, while this is zero above. In par-
ticular, the ordinary circle-map scaling properties are
suppressed at the transition to chaos.

We want to comment on the observation that the max-
imal slope of the Poincare map in Fig. 2 is finite and not
infinite. As already stated this is a consequence of the
smooth behavior of the flow. The upper threshold corre-
sponds to a region in phase space where trajectories
greatly separate over short times to be attracted to an
unstable focus corresponding to the lower threshold. The
(positive) real part of the eigenvalue is small here com-
pared to the contracting eigenvalue which determines the
resetting time. In this sense the attractor is a typical
Rossler- or Lorenz-type attractor. ' Such a behavior has
recently been suggested also to characterize chemical
systems such as the Belousov-Zhabotinskii reaction. '

Without writing down any complicated Aow equation our
picture provides a simple understanding to why an entire
nonchaotic but complete phase-locked region is obtained
experimentally.

In conclusion, we have shown that the generic proper-
ties of driven relaxation oscillators can be understood
from a simple integrate-and-fire principle. This intro-
duces a critical transition to complete phase locking
which precedes the transition to chaos, it explains the

scaling properties, and spells out the general behavior of
the Arnold tongues, including the origin of bumps
thereon. As regards the connection to circle maps, previ-
ous studies on ordinary circle maps and circle maps with
a discontinuity are sufficient to describe the scaling
structure. We believe that our picture is applicable to
many mode-locking systems characterized by a local re-
gion where the flow greatly separates.
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