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The model proposed recently by Yeshurun and Malozemoff to explain the “irreversibility line” in
high-temperature superconductors is extended to account for the experimentally measured width and
shape of the resistive transition in a magnetic field, without invoking material inhomogeneity. It is ar-
gues that high 7. and H.; are necessary, but not sufficient, conditions for such materials to show zero
resistance at room temperature in substantial magnetic fields.

PACS numbers: 74.70.Vy, 74.60.—w

Yeshurun and Malozemoff! have recently proposed a
new interpretation of the “‘irreversibility line” in the
high-temperature superconductors, first reported by
Miiller, Takashige, and Bednorz.? This line separates the
region near T, in the (H,T) plane in which the sample
shows a unique reversible magnetization M (H,T), from
the region in which M (H,T) depends on the previous
path in the (H,T) plane. The form of this irreversibility
line was found to be

1—taxH?3, (1)

where t=T/T,. This behavior resembled known phe-
nomena in spin-glass physics, which led to calling the ir-
reversibility line also a ‘“‘quasi de Almeida-Thouless
line.” The interpretation offered by Yeshurun and
Malozemoff was in the more conventional language of
pinning, creep, and flow of fluxons (quantum flux lines)
in the superconducting medium. In their view, the ir-
reversibility line identifies the limiting conditions under
which nonequilibrium supercurrents can “persist” over
the duration of an experiment, giving an irreversible con-
tribution to the magnetization. Starting from this *“‘giant
flux creep” point of view, the IBM group also explained
apparent differences in T.(H) measured on the same set
of samples as being a consequence of different measuring
frequencies relative to flux creep rates.® This led them to
suggest that the values of H.,(T) inferred from such dis-
sipative measurements are serious underestimates of the
true thermodynamic values.

In this Letter, we extend this attractive model to ac-
count for the width and shape of the resistive transition
as a function of field. The good agreement which we find
with experimental results provides further support for
the model of Ref. 1. In addition, we point out some of
its more general implications.

The key ingredient that we take from Ref. 1 is the es-
timate of an activation energy Up which must be over-
come to allow flux motion and hence resisitance. By a
heuristic scaling argument, Yeshurun and Malozemoff
argue that Uy should have a form that we can write as

Uo=pHE¢o/B. (2)

Here H, is the thermodynamic critical field, & the coher-
ence length, ¢o the flux quantum kc/2e, B the flux densi-
ty in the sample, and the parameter 8 (presumed ~1) is
introduced to absorb all numerical factors. Although we
consider (2) to be an empirically justified bit of phenom-
enology, we offer the following possible rationale for this
curious formula in terms of thermally activated vortex
lattice shear: For H < H.;, B=0, and no fluxons are
present to move. For H > H., the fluxons overlap as
soon as B > H.), because their separation is then less
than the penetration depth A; as a result, their motions
become energetically correlated. This correlation energy
goes to zero again at H,.,, as the order parameter does.
For these high » materials, there is a wide intermediate
filed range, where H., < H<H.; and B=H. In this
range, the vortex-lattice-dependent term in the Gibbs
free-energy density

AG = — (H,,— H)?*/[87(2x*—1) B4l

can be approximated by — H2/87Ba, since H., =</2xH...
The Abrikosov parameter 8 has the value 1.16 for the
equilibrium triangular lattice and 1.18 for the metasta-
ble square lattice. To estimate the energy density barrier
G opposing the motion of a row of fluxons past neighbor
rows (which may be pinned), we take §(1/84)~0.02,
based on the square-triangle lattice difference. To con-
vert this energy density to an absolute energy barrier Uy,
we must multiply by a volume. The elemental movable
volume in the flux lattice has the cross-sectional area of
the Abrikosov unit cell ¢o/B and length & This volume
element must be multiplied by the number of adjacent
fluxons that effectively move together to avoid large vor-
tex compressional energies. Similarly, to avoid the ener-
gy cost of undue elongation of fluxons by sharp bends,
the jump must extend over a fluxon length which is a nu-
merical multiple (> 1) of £. [Alternatively, the jumping
length might be related to the fluxon spacing (¢o/B) '/
instead of &, or perhaps to the layer spacing d in very
strongly layered materials. Such situations would
change detailed quantitative dependences, but not the
qualitative conclusions of this Letter.] Combining these
considerations, and absorbing numerical factors in 8, we
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obtain (2).

We now transform (2) by substitution of the Ginz-
burg-Landau relation* 00=2~2rH £\ and the intrinsic
Ginzburg-Landau depairing critical current density
Jeo=cH./3/6m\, obtaining

Uo=(33¢3B/2¢)J.0/B. 3)

(Note that this J.q is not the measured J; it is the value
of J. at B=0 and without reduction by thermal fluctua-
tions.) We prefer formula (3) over (2) because it in-
volves only one material parameter J.o instead of two
(H, and &); more importantly, J.o has a relatively clear
operational meaning even in the presence of granularity,
while the other parameters become more ambiguous.

Since thermally activated processes depend exponen-
tially on Uo/kpT, we define a normalized barrier height
by

)’0=U0/kBT=[CJco(O)/TCB]g(l), 4)
where
C=(33¢8B/2ckg=80.7 (G K cm?/A) (4a)

if B is expressed in G, T in K, and J, in A/cm?. Here
J.0(0) is the critical current density at 7=0 and B =0,
evaluated along the crystal direction of the fie/d in the
resisitance measurement; the function

g)=1—12(1 =11 =401 —1) (4b)

builds in the “two-fluid”’ empirical approximations to the
temperature dependences of H, and A. [It is important
to recognize that fluctuation effects reduce the measured
J. essentially to zero between 7. and the irreversibility
temperature. When this J.(T), or the resulting irre-
versible magnetization M (T), is forced to fit a form
(1—1)", large values of n==2-8 are found because of
this finite range of J, =0 near 7,. This does not reflect
the temperature dependence of J.o, which, by definition,
is not reduced by fluctuations, and is described by g(z).]
The final expression in (4b) is the limiting form of g(z)
near T,, which is actually accurate to better than *4%
all the way from ¢ =1 down to ¢ = 3. In this region, we
can write (4) as

vo=A—1)*B, (4c)

where A=4CJ.o/T.. For YBCO, with T.=92 K, the
factor 4C/T. == 3.58, so that A can be simplified further
to A==3.58J.0(0), where B is expected to be of order
unity.

In the work of Ref. 1, the parameter Uy was used to
estimate the temperature at which thermally activated
phase slippage becomes slow enough to leave nominally
persistent currents, with decay measurable only as flux
creep over a period of time. We now use this Uy to de-
scribe the visible resistive width of the transition, in
which the phase-slip rate d6/dt is so high that one sees
its effect as a time-average dc voltage V =(h/2e)d6/dt.

To do this, we treat the resistance of the sample as aris-
ing from phase slippage at a complicated network of
channels, where fluxons are slipping past one another
over barriers between local energy minima; the passage
of each vortex gives a phase slip of 2z. We then argue
that the kinetics of this driven, highly damped thermally
activated process involves essentially the same 2z-phase-
slip physics as the case of thermally activated phase
motion in a single heavily damped current-driven
Josephson junction. The latter problem was worked out
in detail by Ambegaokar and Halperin,® and we simply
apply their work in the present context. Even if not
rigorously applicable to this case, their results at least
provide a plausible semiquantitative model for the
dependence of R/R, upon .

According to Ambegaokar and Halperin, in the limit
of very small currents, the resistance of each link is re-
duced by the ratio

R/R, =Io(30/2)]1 72, Q)

where I is the tabulated modified Bessel function. (For
large values of yo, R/R, falls as ype "°, but for yo < 1, it
only falls quadratically with y,.) This has the conse-
quence (insofar as yp is the same for all the links) that
the resistance of the macroscopic network, however com-
plex, will display this same dependence. Combining (4c)
and (5), we can write

R/R,={Iol4(1 —1)¥?/2B1} 2 6)

This is the central result of this paper. From it, we
make the following observations:

(a) The temperature width of the transition (at any
R/R,, level) should scale as

AT < B3, )]

This dependence not only accounts qualitatively for the
ubiquitous broadening of the resistive transition in a field
without needing to invoke an inhomogeneous sample as
done in most previous explanations, but also the specific
predicted B?* dependence fits quite well with a variety
of published data.®® We also point out that the result
(7) would hold even if the functional form (5) were re-
placed by some other similar function of Uy/kgT, so long
as the form of (4¢) holds.

The result (7) can be viewed as a generalization of the
expression (1) for the irreversibility line, which in fact
corresponds to choice of a level of R/R, sufficiently low
(or of yo sufficiently high, ~20) that apparently per-
sistent currents flow.

(b) Another scaling consequence of the dependence of
R/R, on the single variable yo in (4c) is that, at any
chosen R/R, level, the resistively measured “upper criti-
cal field” near T, will vary as (T, —T)m, not linearly
with (T, —T) as in classic superconductors; in the latter,
the resistive transition occurs at the same (H,T) as the
thermodynamic one because these activated processes
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are negligible. H.,(T) data in the literature on high-
temperature superconductors often display an ‘“upward
curvature” behavior near T, qualitatively similar to this
dependence. In many cases, such as the data on single
crystals of YBCO by Iye et al.,® and also the data on ep-
itaxial films of Oh er al.,” it appears that there is a good
quantitative fit to this predicted (T, — T')*? dependence.
This fit was noted by Oh et al., but interpreted in terms
of critical fluctuations.

(c) We now go beyond scaling arguments to compare
the experimental data and the specific functional form of
(6). In Fig. 1, we reproduce some particularly clean
data from the work of Iye et al.® on a high-quality
YBCO single crystal with H parallel to the ¢ axis, to-
gether with a similar family of curves computed from
(6) with the single fitting parameter 4 =1.2x10" G.
For B=1, this number corresponds to the value
J0(0) =3x10% A/cm? in (4). This is not an unreason-
able value for an excellent crystal, even though it refers
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FIG. 1. (a) pa (T) of YBCO crystal for various values of H
as reported in Ref. 6. (b) Computed curves from Eq. (6) with
single fitting parameter 4. At each level of R/R,, the theoreti-
cal downshift 7. —T is plotted relative to the experimental
R(T) curve for H=0. No adjustment has been made for the
general linear slope of R,(T).
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to the direction parallel to the ¢ axis. The agreement be-
tween the two sets of curves is quite impressive for a sin-
gle parameter fit. Comparable agreement is found with
the data of Iye et al., taken with H perpendicular to the
¢ axis; in that case, the fitted A4 is about 6 X 107 G, corre-
sponding (for =1) to J.0(0) = 1.8x10” A/cm? in the
ab-plane direction. When a similar analysis is made of
the data of Oh er al.” polycrystalline-oriented epitaxial
films, the A values are found to be 7x10° and 4x10” G
for the two directions. The anisotropy ratio of these
values is 6, in good agreement with the single-crystal
data of Iye et al., but the absolute magnitudes are only
about % as large, perhaps indicating slightly poorer
quality crystals. Direct measures of J. suggest values of
the order of 4x10° and 3%10°% A/cm? in the two direc-
tions for an anisotropy ratio of ~7, but the published
data® are rather meager. Thus our model gives good
consistency for the anisotropy ratio of J.o; the absolute
magnitudes suggest that the value of B in (4a) may be
~35, or less if the measured J, values seriously underesti-
mate J,0(0) because of fluctuation effects.

Data on ceramic “pellet” material must be expected to
be more variable. However, the field-sensitive part of
the resistive transition (for H <50 Oe) reported by
Dubson et al.? is quite well described by our model, with
A=1.2x10° G. This value is about 100 times smaller
than found in the crystalline samples, corresponding to a
J.0(0) value lower by a similar factor. This does not
seem unreasonable, if we consider the presumed weak
links between grains in the ceramic.

(d) In plotting the fitted curves to the resistive transi-
tions in Fig. 1 for H > 0, we took the measured slightly
rounded transition curve for H =0 and, at each value of
R/R,, displaced it downward in temperature by the
value of T.—T inferred from (6). Note that this
amounts to the assumption that there is no downward
shift of T, itself by the magnetic field. Even with &£, (0)
of only 12 A, a field of 90 kOe parallel to the ¢ axis
should depress T.,(H) by ~—3.5 K. This is about the
magnitude of the downshift of the top of the resistive
transition, as extrapolated from the linearly rising por-
tion, but in the fitted curves this results from the
broadening of the resistive transition, without any shift
of the end point at T.. The absence of a perceptible de-
crease in T, is consistent with the precise magnetization
data of Athreya er al.'® They find a reversible magneti-
zation proportional to (T, —T)?2, with the fitted T.(H)
apparently unshifted in a field of 20 kOe, at which one
might expect a shift of 0.8 K for the same assumed
Ea(0). A possible resolution of this puzzle is provided
by the data of Fang er al.,!' showing that the thermo-
dynamic H,., determined from the onset of reversible su-
perconducting magnetization rises as (1 —¢) 12 pear T.,.
(The unusual exponent of 5 may arise from fluctuation
effects near T,, rather than from the two-dimensional
model suggested by Fang ef al.) According to this mea-
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sured dependence, T, would only be depressed by 0.4 K
at 20 kG, which is probably near the limit of detectabili-
ty in the data of Ref. 10. At the very least, the viewpoint
put forward here accounts naturally for the fact that any
shift in 7.(H) in these data is much less than would be
expected if R/R, =0 or 0.5 indicated the thermodynamic
H.,. By the same token, a small shift in 7.(H) would
also be inconspicuous in fitting the larger broadening of
the resistive transition analyzed here.

(e) Finally, let us explore the broader implications of
this model, extending the general thrust of our earlier
publication'? on the importance of flux creep in the
high-temperature superconductors. The following re-
marks are somewhat speculative, in that they assume the
expression (3) for the barrier Uy, although it has been
validated empirically only in a limited range of condi-
tions.

We note that a minimum requirement for a nonzero
critical current at zero voltage is that R/R, be exponen-
tially small. According to (5), this requires that the ra-
tio yo=Uo/kpT exceed some threshold value ym;, of the
order of 20. Given the form of (4), this requirement can
be translated into the requirement that the product of B
and T satisfy the inequality

BT < CJeo(t)/ ¥min=DJ.0(0)(1 — ) (1 — ¢V, (8)

The constant C, given by (4a), should be of order 200,
while we expect Ymin~20, so D~ 10 might be a reason-
able estimate, for J.o expressed in A/cm?. For the
representative value J.o= 10" A/cm?, (8) then becomes

BT <1031 —t3) (1 —1%)172, (89

regardless of the values of H.; and T,.

At 4 K, the condition (8') is no serious constraint, al-
though as B increases, making the zero-resistance condi-
tion less generously satisfied, it presages limited critical
currents. The real significance of (8') is the constraint it
puts on high-temperature operation. For example, if
taken literally, it would exclude zero resistance at room
temperature and ~ 300 kG, no matter how high T, and
H., might be! More concretely, with a 400-K supercon-
ductor operating at room temperature, zero resistance
would be limited to B < 100 kG, again, no matter how
much higher H.; might be. One must bear in mind that
these statements are based on the minimal criterion of
zero resistance, not much stricter requirement of a use-
fully large I.. On the other hand, the numbers represent
a rather crude estimate; new materials might have
significantly higher intrinsic J,0(0) values and/or
different detailed dependences on parameters. The basic

point, however, is that useful supercurrent properties in
the presence of substantial magnetic fields will be
difficult to achieve at room temperature. It is not
enough just to raise 7. and H,,; unless J.o(0) is of order
107 A/cm?, it appears that the materials will be resistive
at room temperature even if they are, thermodynamical-
ly speaking, in the “superconducting” state.
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Note added.— In fact, recent data by Palstra et al.'?
on the Bi superconductor show thermally activated resis-
tance qualitatively similar to that described here, but
with Up having a more complicated H dependence.
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