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Variational Quantum Monte Carlo Nonlocal Pseudopotential Approach to Solids:
Cohesive and Structural Properties of Diamond
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A new method of calculating total energies of solids which uses nonlocal pseudopotentials in conjunc-
tion with the variational quantum Monte Carlo approach is presented. By use of pseudopotentials, the
large fluctuations of the energies in the core region of the atoms which occur in quantum Monte Carlo
all-electron calculations are avoided. The method is applied to calculate the binding energy and
structural properties of diamond. The results are in excellent agreement with experiment.

PACS numbers: 71.20.Ad, 61.50.Lt

In this Letter, we present a new method of performing
quantum Monte Carlo (QMC) calculations for solids
and atoms using nonlocal pseudopotentials, thus extend-

ing the range of practical applicability of the QMC
method for many-fermion systems for the first time to
real solid-state systems involving heavier (Z) 2) ele-
ments. This approach is used to calculate the correlation
energy and structural parameters of diamond. The lat-
tice constant is within 1% of the experimental value.
The calculated cohesive energy is 7.45+ 0.07 eV/atom,
as compared to the experimental value of 7.37 eV/atom.
This result is thus in significantly better agreement with

experiment than the value of 8.63 eV/atom for the bind-

ing energy of diamond obtained with the local-density-
functional formalism. Typically, local-density-approxi-
mation (LDA) binding energies are too large by
15%-20%.

The variational Monte Carlo method, as applied to
quantum-mechanical many-body problems, was pio-
neered by McMillan' to study liquid He and first ap-
plied to fermion-liquid problems by Ceperley, Chester,
and Kalos. More recently, the Green's-function quan-
tum Monte Carlo approach to the many-electron prob-
lem has been applied very successfully to the electron
gas, to light molecules, and to solid hydrogen. How-
ever, a straightforward application of the method to real
materials containing heavier atoms has been severely
hampered by the very rapid growth in the required com-
putation time with increasing atomic number. This
growth is caused primarily by the Auctuations in the en-

ergies of electrons in the core region. The motivation to
overcome this restriction on quantum many-body calcu-
lations is high, especially for strongly correlated electron-
ic systems with d and f electrons that are of major
current interest and importance. Even in condensed-
matter systems ~here the electronic structure can be said
to be reasonably well understood, the standard approach
of local-density-functional theory has consistently failed
to give correct binding energies, although other

structural properties may be in good agreement with ex-
periment.

A natural first step towards a full many-body theory
of both strongly and weakly correlated electronic systems
is the variational QMC approach. The desire to study
a wider class of real condensed-matter systems has
prompted our development of a pseudopotential ap-
proach, which replaces the effects of the core electrons
by an ionic potential. This has proven very successful in

the treatment of many systems within local-density-
functional theory. The ionic pseudopotentials used are
those generated by the scheme of Hamann, Schliiter, and
Chiang' for LDA calculations. The nonlocality of the
pseudopotential makes the present problem different
from previously considered QMC problems. However,
this problem can be overcome in the variational QMC
method. In the Green's-function QMC approach a
nonlocal potential causes much greater problems because
the propagator is not positive definite and only transient
estimates of averages can be obtained.

In the present approach, as in other variational calcu-
lations for ground-state energies, we choose a correlated
trial wave function and evaluate the expectation value of
the exact Hamiltonian for this wave function. The
many-body integrals are evaluated with the Metropolis
Monte Carlo algorithm" for importance sampling. The
importance function is ~%'(R) ~, the square modulus of
the many-body wave function at the configuration
R=fr;J;-l. Thus, the random walk proceeds so as to
visit points R in configuration space with probability
density equal to ~%'(R) ( . The average of a quantity
over the walk is an unbiased estimator of the integral of
the quantity with respect to the weight

~
%'(R) (

J f(R) I +(R) I
'dR =—gf(R; ). (I)

n;=~

For the total energy, the function f(R) is taken to be
[He] (R)/e(R).

As the trial many-body wave function we use the
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Jastrow-Slater form:2.

JV

+(rl, . . . , r~) =exp g g(r;)—
i=1 1(i (j(W

u(r;)) D(rl, . . . , rN),

where D is a Slater determinant of single-particle wave
functions. In the present application to diamond, we will

use the LDA single-particle wave functions. ' In sys-
tems where the LDA fails more drastically than in dia-
mond, a different approach to the choice of single-
particle wave functions may be necessary. The many-
electron Hamiltonian,

(3)

consists of the usual three terms: the kinetic energy of
the valence electrons, an external potential (due to the
ions in the crystal), and the Coulomb interaction be-
tween the valence electrons. In the present calculation,

Hnonlocal Z& d» VI (r)P!,r
( dp (4)

Here P(, is the angular momentum l projection opera-
tor. For a given configuration {rjl~=l, with r;=r, the
contribution from the angular momentum potential
Vi(r) to the energy is

the kinetic and electron-electron energies are evaluated
as in Ref. 2. The value of the local part of the external
potential at each configuration on the random walk is

evaluated with Ewald summation techniques.
The nonlocal part of the external potential involves the

evaluation of the many-body wave function on a sphere
about each atom. The nonlocal potential for an ion at
the origin acting on the ith electron has the form '

(5)

where 0, is the angular coordinate of the vector r' when
r points along the polar axis. The nonlocal potentials are
very short ranged (=2 atomic units) ' and so we need
only sum the potentials of at most two neighboring
atoms. In the present application the nonlocal potential
has only an s component. For the s-projection operator
we take the integral in Eq. (5) as the average of the in-

tegrand at four points (n/2 ~ 8, & ~ tr/2) with equal
weight. The point fl 1 =(z/2+8, &+z/2) is chosen ran-
domly at each step with a uniform solid-angle distribu-
tion. This estimator is unbiased for all functions and has
zero variance for projection of s and p functions. We
will discuss the procedure for generating special points
for higher angular momenta in a longer paper. ' The
computational effort involved in the evaluation of the
nonlocal potential with this scheme is comparable to that
for the kinetic energy.

We have applied the method to study the binding en-

ergy and equilibrium lattice constant of diamond. A
simulation supercell containing 16 atoms (or 64 elec-
trons) in the diamond structure with periodic boundary
conditions was used. For some calculations, a larger re-
gion containing 54 atoms (or 216 electrons) was used to
determine finite-size effects. The size dependence for
larger simulations is mainly determined by the conver-
gence of the one-body terms, as given within band theory
by the k-point sampling of the Brillouin zone.

The function u (r;J.) in the Jastrow factor is chosen for
the solid to be of the standard form u(r) =A(1
—e "t )/r. The value of A (and the asymptotic 1/r
dependence) is determined by the zero-point motion of
the plasmons in the solid, as discussed in previous work

on the uniform electron gas. ' The value of F is different
for like and unlike spins and is chosen to satisfy the
"cusp" condition' on u(r), due to the singularity of the
Coulomb interaction, as r 0. Although these condi-
tions on u(r) do not determine its optimal form in the in-
termediate region (r-r, ), we have found, by relaxing
these conditions on A and F and by adding an
intermediate-range term, Cexp[ —(r/r, ) 1, to u that in

practice these values of A and F (and the original form
of u) are at the variational minima within statistical
noise. In the atom, u(r;J) is chosen to be of the form
u(r) = ar/(I+br). The—cusp condition on u(r) as
r 0 still applies in the atom and is used to determine a.
The value of b is found by minimizing the energy with

respect to this parameter. We have also used the same
form of u in the atom as for the solid, with identical re-
sults. For the one-body term in the Jastrow factor, we
set g(r) =aln[pz„-0(r)/pz-o(r)]/2, where p(r) is the
charge density and a is a variational parameter. The op-
timum value of a is close to 1, as expected, since the
LDA charge density is generally quite good. This ap-
proach gives values for the ionization energy and elec-
tron affinity of carbon in agreement with experiment
within ~0.2 eV/atom (C is unbound in LDA). ' It
appears then that three-body terms in the Jastrow factor
can only lower the energy by no more than approximate-
ly 0.2 eV/atom.

As is shown in Table I, the introduction of a Jastrow
factor with only the two-body term u lowers the total en-
ergy of the solid by approximately 3.8 eV/atom. With
the introduction of the Jastrow factor, the electron-
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TABLE I. Terms in the total energy of the solid (64-
electron simulation at a lattice constant a =3.63 A) for a single

Slater determinant of LDA wave functions and for a Jastrow-
Slater function with a two-body term only in the Jastrow fac-
tor, as discussed in the text, and with LDA wave functions in

the determinant. Energies in eU/atom.

TABLE II. Total energies (in eV/atom) of the carbon pseu-
doatom and of diamond (with finite-size correction) for (a)
LDA calculation, and for Monte Carlo calculations with (b)
single Slater determinant of LDA wave functions and (c)
Jastrow-Slater function with one- and two-body terms in the
Jastrow factor. The expected statistical error in the last digits
is in parentheses.

Local potential
Electron-electron
Kinetic
Nonlocal potential
Ewald sum

Total

Slater
determinant

—87. 1

—29.2
121.3

15.8
—171.0
—150.2

Jastrow-Slater
(u only)

—73.6
—39.0
116.8

12.8
—171.0
—154.0

Carbon
atom Diamond

Cohesive

energy

'See Ref. 12.

(a) LDA —146.79 —155.42 8.63
(b) Slater determinant —145.55 (7) —151.3 (2) 5.85 (25)
(c) Jastrow-Slater -147.93(3) —155.38(6) 7.45(7)
(d) Experiment' ~ ~ ~ ~ ~ ~ 7.37

electron energy is substantially reduced. However, the
kinetic energy also decreases, contrary to our experience
with uniform systems; it is the electron-ion energy (local
plus nonlocal potential terms) which is greatly increased.
The general trends in the atom are similar. In that case
the introduction of u lowers the total energy of the pseu-
doatom by approximately 0.6 eV. Without the one-body
term g(r) in the Jastrow factor, the presence of a
nonzero u(r;l ) alters the charge density from that of the
Slater determinant alone. Because u(r) is a decreasing
function of r, its effect is to reduce the charge density in

the high-density regions and increase it in the low-

density regions. This explains both the increase in the
electron-ion energy and the decrease in the kinetic ener-

With the introduction of the one-body term in the Jas-
trow factor, the energy of the solid is further reduced by
0.3 eV/atom. In the atom the one-body term is more im-

portant, lowering the energy by 1.8 eV. In systems
where the LDA charge density is poor, a different ap-
proach to the g factor would be necessary. It is possible
to derive, subject to certain approximations, an Euler-
Lagrange equation for g to minimize the energy. ' In
principle, this allows us to determine g entirely within
the QMC approach.

When the one- and two-body terms are included in the
Jastrow factor, the correlation energies for the valence
electrons in the atom and the solid are thus found to be
2.4 ~ 0.1 eV and 4. 1 ~ 0.2 eV/atom, respectively. This is

in reasonable agreement with recent calculations' for
the valence electrons in an all-electron calculation using
a similar Ansatz for the many-body wave function, but
evaluating the energy by diagrammatic techniques. The
estimate of the Hartree-Fock binding energy obtained
with LDA wave functions in a single Slater determinant
is 5.85 ~0.25 eV/atom, in agreement with the results of
Ref. 15.

The final results for the binding energy of diamond in

the present approach are shown in Table II and corn-
pared with the LDA results using the Ceperley-Alder

form for the exchange-correlation energy. ' We have in-
cluded the zero-point energy of the phonons in the ener-

gy for the solid. The Monte Carlo calculation gives a
binding energy of 7.45~0.07 eV/atom, in excellent
agreement with the measured value of 7.37 eV/atom. 'z

The results obtained from the QMC calculations of the
energy as a function of lattice constant are fitted with a
Murnaghan equation of state, as shown in Fig. 1. We
obtain a fitted equilibrium lattice constant of 3.54 0.03
A and bulk modulus of 420~ 50 GPa, compared with

experimental values of 3.567 A and 443 GPa, respective-
12

In conclusion, we have performed variational quantum
Monte Carlo calculations of the binding energy, equilib-
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FIG. 1. Calculated total energy of diamond as a function of
the ratio of the lattice constant to the measured lattice con-
stant. The curve is a fit of the Murnaghan equation of state to
the calculated points. The error bars indicate the standard de-

viation of the mean in each Monte Carlo calculation.
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rium lattice constant, and bulk modulus of a solid, using
nonlocal pseudopotentials. We demonstrated the compu-
tational feasibility of the method and obtained results in

excellent agreement with experiment for both the
cohesive energy and structural properties of diamond. It
should be straightforward to apply the method to many
other materials, including the d-band metals and other
strongly correlated electron systems, where the LDA has
had more serious problems. It is also possible to examine
quantities which are not accessible in the LDA approach,
such as explicit pair correlation functions and many-
body eÃects on Compton profiles.
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