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Modulational Instability and Its Consequences for the Beat-Wave Accelerator
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The modulation instability caused by the coupling of a Langmuir wave to the ion motion is investigat-
ed in the domain of large vL/v„) I ratios, where vL and v&, denote the pump Langmuir-wave quiver ve-

locity and the electron thermal velocity, respectively. A convenient approximate expression for the
growth rate is given for vL/v„(50(A/Z)'~. The limitation of the beat plasmon growth due to the
modulational instability is studied in the context of plasma beat-wave experiments and the maximum
beat plasmon amplitude is determined numerically.

PACS numbers: 52.40.Nk, 52.75.Di

It has been recently suggested' that the large electric
field of a relativistic (v&=c) electron plasma wave may
be used for ultrahigh gradient acceleration of particles.
The plasma beat-wave accelerators (PBWA) and the
plasma wake-field accelerators are the two main propo-
sals. In the PBWA, the beat wave grows linearly until
it saturates because of a mismatch (linear or nonlinear)
between the Langmuir wave frequency and the beat fre-
quency. However, it is well known that the coupling of
the Langmuir waves to the ion motion can give rise ei-
ther to the modulational or to the decay instabilities.
For this reason several authors ' have pointed out that
such instabilities might have a dramatic effect upon the
growth of the beat plasma wave in the context of PBWA.
It was, however, pointed out that the latter conclusions
have a narrow applicability range since they were de-
rived within the usual framework vgv„(1 in which the
decay and the modulational instabilities have mainly
been investigated in the past; here v„=(kaT,/m, )'
denotes the electron thermal velocity and v L—=eEL/
m, co&, is the peak oscillation velocity in the Langmuir
wave electric field; the latter is characterized by a fre-
quency roo= ro~, and a wave number ko=ro~, /c (ro~,
denotes the electron plasma frequency and c the speed of
light). Henceforth the results which are usually derived
in the domain vgv„(1 are referred to as "weak-field
regime. "

In the context of PBWA, the quantity vL/v„ is easily
related to the density amplitude of the Langmuir wave
bnL, one finds vL/v„23(bnL/no) T, '/, where no is the
electron density and T, the electron temperature in units
of keV. In PBWA experiments, Langmuir wave levels
(b'nL/no) as large as 10 ' are expected; since the plasma
temperature of present day experiments can be very low,
of the order of a few tens of eV, vtiv„could reach
values significantly larger than unity. One thus clearly
sees the need for a careful investigation of the instability
domains for low-temperature plasma. For the reader' s
convenience, we represent in Fig. 1 part of the results ob-
tained previously in Ref. 5 as well as the results derived
in this Letter. In this figure are drawn the domains cor-

responding to the different types of instabilities in

(pB, , T,) space; here I is the flux of the higher frequen-

cy laser, A, is its wavelength, and p is the amplitude ratio
of the two lasers. Domains (1) and (2) have been con-
sidered in Ref. 5 and they correspond to the regions
where the standard modified decay [domain (l)l and
standard modulational instabilities [domain (2)] reduce
the beat plasmon growth as compared with the relativis-
tic predictions. In these two domains the weak-field re-
sults apply. Region (3) represents the domain investi-

gated in this Letter where the beat plasmon is still limit-
ed by the modulational instability, although the limita-
tion is less severe than what could be expected from a
naive extrapolation from the results of domain (2): as
shown later on, the ion instabilities' limiting role de-
creases in domain (3) because of a reduction of the
modulational growth rate caused by a large ratio vL/
v„))1. Domain (3) will be referred to as "strong-field
regime. " Lastly, region (4) corresponds to the domain
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FIG. 1. Domains corresponding to the different saturation
mechanisms for the beat plasmon growth in the case Z/A

1pA, is in W cm pm and the electron temperature T, is

in keV. Domain (l) corresponds to a saturation caused by the
modified decay instability, domain (2) by the modulational in-

stability in its usual weak-field regime, domain (3) by modula-
tional instability in its strong-field regime, and domain (4) by
relativistic detuning.
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where the plasma-wave growth is not affected by the ion

instabilities, i.e., the domain where the nonlinear relativ-
istic phase slip of the Langmuir wave relative to the beat
of the two lasers attains rr/2 before the ion instabilities
have suf5cient time to grow.

The dotted line separating domains (2) and (3) repre-
sents the boundary at which the eAects caused by a large
ratio vL/v„have to be taken into account in the compu-
tation of the instability growth rate. One can see that in

our present context of PBWA this boundary concerns the
modulational instability only; for this reason we restrict
our analysis to the two following questions: (i) On the
one hand the modulational instability is investigated
without the constraint vL/v„& I; it is found that the
usual weak-field expression for the growth rate is valid as
long as the particle excursion in the plasma wave is
smaller than the wavelength of the perturbation, i.e.,
kvL & cop„corresponding to a maximum value for vL/v„
of the order of (co~/cop;) 'i; we compute the growth rate
in the opposite regime, kvL & cop„and find that it cannot
exceed I.S(A/Z) 'i

cop; (here cop; is the ion plasma fre-

quency and A and Z are the ion mass and charge num-

ber, respectively). (ii) On the other hand, we estimate
the maximum amplitude of the plasma wave excited by
the beating of two lasers of constant intensity when the
limiting mechanism for the plasma-wave growth is the
loss of coherency due to the e folding of the modulation-

ally unstable Auctuations. We confirm that for moderate
intensities this latter limiting mechanism dominates the
nonlinear relativistic detuning effect studied by Rosen-
bluth and Liu.

Let us erst consider the modulational instability of a
one-dimensional large amplitude Langmuir wave of wave

number kp and natural frequency cop= cop, . In the case
uL/u&, & cop;/cop„a condition that we assume henceforth,
the maximum growth rate occurs in the so-called super-
sonic regime, in which the wave number k,„satisfied
k,„»kp. For this reason we take kp=0 and the in-

equality kp«k, „ is a posteriori found to be satisfied in

domains (2) and (3) of Fig. 1. In this limit kp=0, one
can use the oscillation reference frame technique from
which one may easily derive the dispersion relation. In
the limit kkDe« 1, ku„« y, it reads

y(k)2=co;~ J [—I/(1+@,' )+ —I/(I+@, ' )1+(2/kxL)JpJ ——' J —1 —I/g(

where y(k) denotes the growth rate, A,n, =u„/co, is the
Debye length, and v„ the ion thermal velocity; g, —') and

g,( ) are the electron susceptibilities g, (iy cop„k) and

g, (iy, k), respectively; the argument of the Bessel func-
tions J„ is z kvL/cop, =kxL. Though we have solved

Eq. (1) numerically with all terms, it is interesting to
compare its exact solution with a convenient approxima-
tion. It is indeed easily seen that only the two first terms
are dominant in Eq. (1) since they correspond to the
plasma-wave resonance ~g,

—' —1
~

&& l. In the limit

kl. D, «1, Eq. (1) can thus be reduced to

6k A,

(2)
9k ka+4y jco,

Approximating Ji(z) by Ji (z) =(z/2)(l —z /8), the
maximum growth rate y,„ is found to correspond ap-
proximately to a wave number k = k, =ki(1+k&xL/
2) ', with

ymax
= ( 2 ) copi (cope utejcopi v L)sf 3 1/4 1/2 (4)

where the superscript sf stands for "strong field. "
In Fig. 2, the solid line represents the exact solution of

Eq. (1) as a function of the wave number k of the unsta-
ble fluctuation for vL/v„=25. For comparison, also
shown are the solution of the approximate Eq. (2) (dot-
ted line), and the usual weak-field approximation (3)

a~ 4

l
surprisingly beyond the naive estimate vL/v„& l.

In the opposite case of large amplitude plasma waves,
i.e., for (vt/u„) ~ (co~/cop;) ', one quickly obtains the
following expression for the maximum growth rate:

e

2 pi UL
k 1~De = 2/'33 cope Vle

' 2 1/3

2-

In the case of moderately large amplitude, namely for
(k,A, o,) ) (y,„/cop, ), one recovers the usual expression
of the maximum growth rate of the instability,

0 ~

~

~

G2

ymax 6 copi (v Ljute ), (3)

where the superscript wf stands for "weak field. " The
validity for this expression is easily found a posteriori to
be (uL/u„) ~ (cop, /cop, ) 'i3. Thus the standard expres-
sion (3) has a range of applicability which extends

FIG. 2. The growth rate y(k) in units of cop; as a function of
ki.u, for uL/u„25 and Z/A =1. The solid line is the solution
of the exact equation (1), the dotted line is the solution of the
approximate equation (2), and the dashed line is the usual
weak-field expression of the growth rate.
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where Ji(z) is replaced by z/2 in Eq. (2) (dashed line).
These curves exhibit the smoothing effect of the Bessel
functions on the instability: Physically, when the parti-
cle excursion in the main wave xL becomes comparable
with, or larger than the perturbation wavelength k
the usual ponderomotive potential which gives rise to the
instability is in some sense averaged over the spatial ex-
cursion of the electrons; therefore the latter cannot fully
experience the ponderomotive potential and the growth
rate is consequently reduced.

Figure 3 shows the maximum growth rate y,„as a
function of vL/v„(solid lines). For comparison the re-
sults of the two limiting cases are plotted, namely Eqs.
(3) and (4), as dotted lines; lastly the dashed line repre-
sents the result obtained by setting k =k, and Ji Ji in

Eq. (2). It can be seen that this simple approximation
provides a remarkably good estimate of the maxitnum

growth rate. For completeness we also plot the second
maximum of y(k); we observe that the latter becomes
larger than the first maximum for vL/v„& 38(A/Z) '/.
Actually a careful comparison between the exact solution
of Eq. (1) and our approximation (4) shows that the
latter —corresponding to the first maximum of y(k)—remains excellent for large v L/v„up to v L/v„
= 50(A/Z) '/ . The wave number k«,„corresponding to
the first maximum of y(k) is found to reach its largest
value k,„=0.2ko, ' for vL/v„= 4(A/Z) ', justifying a
posteriori the first validity condition k,„ko,«1 for Eq.
(1) (from this result it follows also that the Landau

damping could actually be neglected). On the other
hand, the ratio y „/k,„v„can be checked and found to
be very large compared with (ZT, /T;)'/ in the super-

sonic regime vL/v„» to~;/ru~„ the second validity condi-
tion y,„»k,„v„ for Eq. (1) is thus satisfied for plas-

mas with T; (ZT, . We therefore conclude that the re-
sult obtained by setting k =k, and Ji =Ji in Eq. (2) is a
very good approximation of the maximum growth rate
y,„of the supersonic modulational instability, for
vL/v„(50(A/Z)'/ and T; (ZT, . Lastly, the growth
rate y,„ is maximum for v L/v„= 10(A/Z) '/ with

y,„=7.8(A/Z) '"~„.
%e now study the effect of this instability on the

growth of the Langmuir wave in the PBWA case. We
assume that the amplitude of the beat wave grows linear-

ly with time until its coherency is destroyed by the insta-
bility. We assume that this happens for
maxkf'y(k, t')dt'=e, =5; this latter critical e folding
has been found to reproduce correctly the results ob-
tained from particle simulations performed with 10'
& PI)j, &2x10' W cm ttm and 15& T, &150 eU.
In domains (1) and (2) where the usual weak-field ex-
pressions apply, the calculation can be performed analyt-
ically; in Ref. 5, the maximum density amplitude that
the beat plasma wave can reach coherently has been
found to be

(bnL/np) ~d„,r =3.2x10 (PI14). ) (A/Z) '

in domain (1) (corresponding to a limitation by the
modified decay instability), and

(bnL/no)" =3.2x10 (A/Z) ' T' (PIiq) ) '

in domain (2) (corresponding to a limitation by the
modulational instability in the weak-field regime). Here
I14 is the laser flux in units of 10' W/cm2 and A, is in

pm. The boundary between the two domains (1) and
(2) (the dashed line in Fig. 1) corresponds to a tempera-
ture T, given by Td«, „/m~„l (Z/A)' (pl14A, ) . Let
us recall that the maximum beat plasmon amplitude in

the relativistic domain (4) is given by

2. (bnL/no)«1~7. 3x10 (pI k )'

0
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The boundary between the domains where the beat
plasmon growth is limited by the ions instabilities and
the one where it is due to the relativistic detuning is rep-
resented in Fig. 1 by a solid line: Between domains (1)
and (4) it corresponds to T, & Td«, „/m~„l and

PI14),' & (PIi4)t') ~...« ——22(Z/A)'";

between domains (2) and (4) it corresponds to T,
+ ~decay/rnodul~

PIi4A, & (PIi4A. )«~„i/«1 =1.4x10 (Z/A) /T,

FIG. 3. The maximum growth rate y,„ in units of co~; as a
function of vtjvi, for Z/A =1. The two curves with solid lines

represent the exact solution of Eq. (1) [the line corresponding
to the first maximum of y(k) begins at vL 0 and the one to
the second maximum at vijv„=201. The dotted lines repre-
sent the results of the two limiting expressions, namely Eq. (3)
for small vL/v„and Eq. (4) for large vL/v&, . The dashed line is

the result obtained by setting k=k and Ji =Ji in Eq. (2).

and

T, & T„t/g=1.8x10 (A/Z)' (PIi4), ) .

The latter temperature is the lower limit below which the
smoothing effect of the Bessel functions upon the modu-
lational growth has to be retained. We have not been
able to derive a simple analytical expression
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FIG. 4. Same figure as Fig. 1 in which are drawn the lines
of isolevels for the beat plasma-wave amplitude (6'nL/no). The
numbers labeling each curve represent the value (bnL/no)
reached by the beat plasma wave.

(pI|4)t. )m~„ii«i(T, ) corresponding to the solid line in

Fig. 1 separating the domains (3) and (4), i.e., such that
for (pIi4X ) & (pI|4)j. )'~„1i„1the plasma growth is lim-
ited by the modulational instability in its strong-field re-
gime. This boundary has been determined numerically

by solving Eq. (1) and by taking e, 5. By doing so, we

also obtained the maximum amplitude (b'nL/no) reached
by the beat plasma wave. In Fig. 4 are drawn the lines
of constant values for the beat plasma-wave maximum
amplitude. As can be seen in Figs. 1 and 4, the impor-
tant result is that due to the reduction of the modulation-
al instability in its strong-field regime, there exists a
maximum flux (pIi+ ),„above which the modulational
instability can no longer inhibit the plasmon growth
This maximum flux is found to be (pIX ),„
=1.3(Z/A)'i 10' W/cm, and it occurs for T, T
=0.2(Z/A ) keV.

In conclusion, we have derived convenient approxi-
mate expressions for the modulational instability growth
rate which are in excellent agreement with the exact re-
sult for vt/U„~ 50(A/Z) 'i . Secondly, we have com-
puted the maximum amplitude (b'nL/no) reached by the
Langmuir wave in the context of PBWA as a function of
the laser fluxes and of the plasma temperature. Finally,
we have determined the flux (pIA. )m,„above which the
modulation has no time to grow to inhibit the beat

plasma-wave generation. Our results are all one ditnen-

sional and therefore cannot account for the effects
caused by the finite transverse size of the laser beams.
Such two-dimensional effects have been investigated else-
where. ' Lastly, it should be noted that the above re-
sults apply only in the type of beat-wave accelerator that
uses a neutral plasma as the wave supporting medium,
and do not apply in another type of beat-wave accelera-
tor that uses a relativistic counterstreaming electron
beam as the wave supporting medium. 'o
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