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Cascade Focusing in the Beat-Wave Accelerator
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The 2D wave-envelope equations for the beat-wave-cascade system are studied analytically and nu-

merically. An expression for the mean square width of the cascade envelope is obtained, and is used to
predict the long-term behavior of the waves. The amplitude of a resonantly driven plasma wave falls
significantly over a stage length because of enhanced diA'raction of the cascade envelope. Conversely,
detuning the pumps from the plasma frequency can lead to focusing of the envelope and a corresponding
increase in plasmon amplitude of up to 200% over the same distance.

PACS numbers: 52.35.Mw, 52.65.+z, 52.75.Di

Much of the recent interest in the beat-wave accelera-
tor concept' has concentrated on the evolution and satu-
ration of the plasma wave generated by the beating of
two copropagating laser beams. Experiments on

beat-wave excitation by Clayton et al. and Ebrahim,
Lavigne, and Aithal have produced evidence for longi-

tudinal electric fields of 1 GV m ', though the difficulty
of diagnosing the plasmon amplitude has prevented

quantitative comparison with fluid theory. Plasmon gen-

eration has also been demonstrated with particle simula-

tions, which have indicated the importance of 2D effects
on both plasmon dynamics and laser-pulse propagation.

The interaction between the plasmon and the elec-
tromagnetic (em) waves has also been studied by several
authors. ' Karttunen and Salomaa derived 1D analyti-
cal solutions for both the plasmon and the Raman cas-
cade sidebands and showed how the fluctuations in the

em spectrum could be used as a diagnostic for the plas-

ma wave. In this Letter, we formulate the plasmon-
cascade problem in 2D. We derive an analytical expres-
sion for the mean square width of the cascade envelope.

The expression is evaluated for various laser parameters
and is used to predict the long-term transverse behavior

of the em waves, and consequently the effects of cascad-
ing on plasmon amplitude and phase. These results are
compared to numerical solutions of the 2D envelope

equations, and we thus show how a suitable choice of
laser pump parameters can improve the "quality" of the

plasmon over a stage length.
We consider two collinear electromagnetic waves de-

scribed by vector potentials A(coo, ko) and A(co~, k~)
propagating in the z direction through an infinite plasma
slab. If the matching conditions co=a~ —coo=co& and

k~
—ko=k~ are satisfied, then a beat plasmon with phase

velocity vp =c(l —cop/2cooco~) is generated. We assume
that the plasma is well underdense (coo/cop =100-300),
so that v~=c, and consequently the plasmon will not
suff'er significant Landau damping.

Starting from Maxwell's equations in planar (z,x)
geometry, and using the wave envelopes

A(z, x, t) = —,
' g [a (z,x, t)exp{i(k z —co t)l+c.c.]

for the electromagnetic vector potential, and

E(z,x, t) 2 le(z, x, t)exp {i(kpz —cot)j+c.c.]

for the plasma electric field, we obtain the following
equations for the electromagnetic cascade and plasmon,
respectively:
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The time and space variables in Eqs. (1) and (2) are
normalized to co

' and c/co, respectively. Likewise, all
frequencies and wave numbers are normalized to co and
co/c; the detuning parameter in the plasma equation is

given by 8=(f 1)/2, and t—he linear dispersion relation
is co =k +f, where f=cop/co and co =coo+m The.
plasma electric field in these units is given by e =qE/
mcoc; the electromagnetic vector potential by a =qA/mc.

Equations (1) and (2) have been simplified by our
making a coordinate transformation to a frame inoving
at the phase velocity v~ of the plasmon: t=t', z=z'
+opt'. (The primes have been omitted. ) We have
neglected 8, e compared to vp tl, e since the time scale is

now determined by the evolution of the cascade envelope
equation, namely, r,~ mo 'L„. %e have also omitted
terms in both equations arising from the relativistic
quiver motions in the em field, and a term

~
e

~
a /8 in

Eq. (1). This approxiination is valid for irradiances
Iok &10' W cm pm, where we are below the
respective focusing thresholds due to these two effects.
The collision frequency is reduced by the electron quiver
motion in the plasma wave (an effect considered, for ex-
ample, in Ref. 11) and we may therefore neglect col-
lisional damping provided that

~
e (,„&&Uth/c.

In arriving at Eq. (2) we have neglected thermal
eff'ects (which introduce a term like U&q8, e), and 2D
plasma-wave nonlinearities. The latter omission is valid
provided that the envelope width is much larger than a
collisionless skin depth, in which case the radial field
e„(&e, and we may also neglect the self-consistent 8
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field. ' We have also neglected wave-number mis-

matches, which introduce terms O(coo ), and are there-

fore small over an accelerator stage length' Ldp 3Np.

The effects of ion motion ' have been omitted. The
higher-order couplings to plasma-wave harmonics at
2co~, 3co~, etc. , have growth rates z & ~e ~

where ~, ' is the cascade growth rate. We may there-

fore neglect these couplings for small plasmon ampli-

tudes (
~
e

~

—10lo).
By taking moments of the em equations (1), we may

obtain useful information concerning the behavior of the
cascade envelope. In particular, we consider the mean

square "separation" of the latter, defined by'

nism for beam spreading (C~ D) as

Ob Ipkp~ 18.3
c/cop 10' W cm pm

(6)

We now consider the effect of detuning the beat fre-
quency co from cop such that the frequency mismatching
opposes the relativistic frequency shift. This yields a
higher saturation value for e, (Refs. 3 and 6) but the
phase now varies between —x and n, and is negative
over a large part of the plasmon buildup region. Numer-
ical evaluation of Im(e, ) as a function of the density
mismatch d, n/n =28 yields the optimum detuning for
minimum C as

(x')=I '(D+C),
2

(3)

where

D=2„+ co '8„a B„a*d x, (4)

C= —Im zco a a +~x dx.—
I 0 tie 3 (5)

Similarly, we find that the mean square length of the
cascade envelope (z ) =const.

In the absence of coupling to the plasma wave (C=O),
D is constant in time, and we retrieve the usual result for

a laser envelope (x ) =Dt /2I+Ft+(xo), where F and

xo are constants of integration. ' The second term is

zero for initially parallel wave fronts.
When cascading is present, D and C are both time

dependent, and so we cannot integrate Eq. (3) for

nonzero C without first solving the envelope equations.
However, we can evaluate 8«(x ) at t=0, given the

boundary conditions a =0, m&0, 1, and ap, ~ =up, ~

xexp( —x /cr —z /z ), where ao ~ are the normalized

peak quiver velocities in the laser fields. In the regime

c/cot, « z« zaL, where zRL is the Rosenbluth-Liu satura-

tion period, the plasmon envelope field is almost wholly

real, and we have C=O. For resonantly driven plasmons
with r-iRL, the phase varies between 0 and z during

the buildup and saturation period, resulting in C & 0. In
order to compare the diffraction and cascading effects,
we evaluate D and C for various pump intensities Ip and

widths o.. The plasmon amplitude e is found from Eq.
(2) with z=zRL and 8=0. We may then express the
width ob for which cascading is the dominant mecha-

(Bx') =I 'g~ (x' —(x)')co~ ~a~ ~'d'x.

The symmetry of the pumps implies 8,(x) =0. Using

this result and the conservation of total wave actionI:fP co~—
~
a

~
d x, we may write

a' — a'(x')=I ' g x'co ia i'd'x,
8t 6t

which after some algebra reduces to

(a /nn)(opt) =0.007 Imp
10"W cm-'~m'

As before for the resonant case, we can evaluate A =D
+C at t=0, keeping z=zRL and taking (A /nn)(opt)
from Eq. (7). We therefore obtain the condition for cas-
cade focusing (C+D & 0):

oh Ipkp

c/cot 10' Wcm pm

To investigate the long-term behavior of the plasmon-
cascade system, we integrate Eqs. (1) and (2) numeri-
cally. The scheme is fully implicit for both the plasmon
and cascade sidebands, and is formulated to conserve
wave action I. This ensures that energy conservation
also holds to a good approximation —particularly for
large frequency ratios coo/co~&100. We consider the
case of (i) a resonantly driven plasmon (D+C & 0) and
(ii) an optimally detuned plasmon (D+ C & 0).

In both cases the laser wavelengths are k~ =1.053 pm,
Xp=1.064 pm, and the plasma frequency is Np 1 ~ 85
x10' s ', giving pump frequencies co~ p of 98.7 and
97.7 in normalized units. The length and width of the
computational window containing the laser pulse are
9000c/co~ and 150c/co~, respectively, with a correspond-
ing grid resolution of 180x50. The total length of plas-
ma can be up to one "Tajima-Dawson" dephasing length

Ld~ =3x 10 c/co~. ' It is necessary to include a
sufficiently large number of electromagnetic modes, at
least 20 in this case, so that the run time does not exceed
the time taken for the outermost sideband intensities to
become comparable to the pump intensities. After this
time, energy is reflected back towards the pumps, which
leads to unphysical solutions for the cascade and
plasmon alike.

(i)Resonant plasmon (C+D &0).—We consider an
example here in which C & D according to expressions
(4) and (5). The laser pumps are Gaussian in both
directions with intensity Ip =8 x 10' W cm and nor-
malized quiver velocity ap=0.0257. The pulse length is
chosen to minimize the initial plasmon wake: r=zk,
where ik, is the relativistic detuning period defined in
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FIG. 1. Normalized plasmon amplitude e =Bn/n in

transformed frame on axis (x =0) at times T=O and
T=10 co~

' for (a) resonant case, hn/n =0, and (b) detuned
case, hn/n =0.68%. The grid resolution is 180 (z) by 50 (x).

Ref. 6. The pulse width is 30c/co~ (FWHM).
The numerical solution for the plasmon is shown in

Fig. 1(a). The amplitude has fallen by 25% in a time
T = 10 co~

' and the position of the maximum has
slipped backwards. This is the result of a fall in em in-

tensity due to outward spreading from the beam axis.
The effective detuning period rk, is therefore increased,
but the average length of the cascade envelope, (z) is un-

changed, so that we now have z & zk„and the plasmon is
not driven as strongly.

(ii) Deruned plasmon (C+D &0).—The laser pa-

rameters are the same as before, but we use a density
mismatch d,n/n=0. 68%. This is chosen to be slightly
greater than the optimum of 0.65% given by Eq. (7), so
that the initial plasmon wake is reduced. Equation (3)
then predicts an initial focusing of the cascade envelope.

Figure 1(b) again shows the plasmon amplitude on
axis at T=O and T=10, the latter time corresponding
to a distance Ld~/3. In contrast to Fig. 1(a), we see that
the maximum plasmon amplitude has increased by a fac-
tor of 3. This is due to focusing of the cascade envelope
in the plasmon buildup region as seen in Fig. 2. In Fig.
2(a) the envelope has decreased in width from 30c/co~ to
approximately 12c/co~. Some small-scale structure has
appeared towards the rear of the em envelope but it is
apparent from Fig. 2(b) that this has not affected the
quality of the plasmon.

After a time T=10 the phase of the electric field e,
at position z =4500, x=0 has advanced by nearly x/2.
This implies that the phase fronts will drift relative to a
particle injected at this point over a distance Lqp3. To
avoid premature dephasing, we could increase the densi-

ty mismatch so that the focusing condition (8) is just
satisfied. The focusing rate will then be slower than for
the "optimum" configuration given by (7).

There is, however, another consideration which affects
our choice of laser parameters. The time scale for pon-
deromotive depletion of ions from the focal spot is given

by z; =2 (m;/Zrrt, ) '/ (b'n/n) 'cr For ou. r parameters
this is about 6000m~, which is several times the
plasmon rise time in Fig. 1. We conclude that the effect
may be significant in this case, but is less so at higher in-

tensities where the plasmon time scale is shorter. We
must therefore choose the laser intensity and spot size
carefully in order to capitalize on the focusing effect.

Physically, "cascade focusing" can be explained by
our considering the relative phase velocity of the em
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FIG. 2. Contour plots of (a) total normalized em wave action +co ( a (z,x) ( and (b) plasmon amplitude
~
e(z,x) ( at time

T =10 ca~ '. The initial maxima are given in parentheses.
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waves across the focal spot, in a similar fashion to rela-
tivistic self-focusing. ' One can show that the nonlinear
refractive index for a scattered cascade mode depends on
the frequency mismatch. If the plasma wave is driven
below m~, the phase velocity of the scattered wave is
lower at the beam center than on either side, and so the
phase fronts curve inwards and the wave focuses.

Apart from improving the prospects for beat-wave
particle acceleration, the cascade-focusing effect could
be used more generally as a means of focusing low-

irradiance laser light in plasmas and possibly other non-
linear media. Further study is needed for high irradi-
ances, however, to determine the comparative impor-
tance of relativistic self-focusing and the effect of higher-
order couplings to plasma-wave harmonics.
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