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Dynamic Permeability in Porous Media
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We calculate from first principles the frequency-dependent permeability x(ro) in porous media for a
variety of microstructures. It is found that when lr(ru) is scaled by its static value xo and the frequency
by a characteristic m, particular to the sample, the resulting function exhibits excellent universal behav-
ior independent of microstructure. We advance arguments that delineate the physical reason for the
scaling behavior as well as the condition for its validity. Our predictions are supported by observed
correlations in sedimentary rocks and experimental x(ro) measurements.

PACS numbers: 47.55.Mh, 47. 15.Gf, 47. 15.Hg

As one of the basic properties of porous media, per-
meability has long been recognized for its crucial role in

many areas of petroleum and chemical industries rang-
ing from oil production from sedimentary rocks to chem-
ical reactions in zeolites. In recent years, experimental
and theoretical studies have uncovered important corre-
lations between permeability and geometric parameters
characterizing the microstructure of a porous medi-
um. ' In particular, it was observed that the product of
state permeability xo and the dc electrical formation fac-
tor is directly proportional to a "throat area" measurable

by a mercury intrusion experiment, and that in the
high-frequency limit the permeability is predicted to con-
tain information regarding the volume-to-surface ratio of
a porous medium. 2 In light of these findings, it is natu-
ral to wonder about the total geometric content of the
dynamic permeability function x(ro), defined as U(ro)

l&()/rl]Vp(ru), where U is the average flow veloci-

ty, rl is the fluid viscosity, and p is the applied pressure.
The answer would determine not only the degree to
which permeability can be a good microstructure probe,
but also the control one might have on x(ro) through mi-

crostructure design. In this work, we present results of
first-principles calculations of x(co) for a variety of
porous microstructures that indicate the general validity
of the relation x(rv)/x'o~f(ro/ro, ), where ro, is a charac-
teristic frequency of the medium and f is a universal
function independent of microstructure. Physical argu-
ments are advanced to clarify the geometric meaning of
this scaling behavior as well as to delineate the general
conditions for its validity. Our theory offers a simple ex-
planation for the observed correlations in sedimentary
rocks, and the scaling predictions are supported by ex-
perimental measurements of «(ro), to be described sepa-
rately.

Consider a fluid-filled porous medium with bicontinu-
ous solid and fluid networks under the excitation of an
external harmonic source with frequency co. The micro-
structure of a porous medium is generally characterized
by a length scale a that is typical of the pore size. If the
fluid has viscosity g, bulk modulus K, and density pf,

then one may also identify an intrinsic time scale
to pfa /rl, associated with the viscous relaxation of any
fluid excitation, as well as a speed of sound co=(K/
pf) ' . Since in units of a/to the speed co is almost al-
ways a big number (for water in sedimentary rocks with
a=1 pm it is on the order of 10 ), we have thus
identified a dimensionless small parameter @=a/toco in

the problem. By regarding L =toco as a macroscopic
length of the system, e may alternatively be regarded as
the ratio between two length scales. In units of a and

pfa /rl, the equations governing the fluid and solid
motions under linearized hydrodynamics can be written
in the following dimensionless forms:

—icov t. 'V cr in Df,

a = —pI+ e2DVv in Df,

imp=a 'V v in Df,
—pG u=e 'V i in D„
z =Ca 'Vu in D„

(la)

(lb)

(1c)

(ld)

(le)

together with the boundary conditions v = —icou,
n o =n z at the fluid-solid interface. Here ro =copfa /
rl, v denotes the fluid velocity, u the solid displacement,
cr the fluid stress tensor, i the solid stress tensor, p the
fluid pressure, C the fourth-rank elastic tensor for the
solid measured in units of K, p=p, /pf the reduced solid
density, Df the fluid region, D, the solid region, DVv the
symmetrized, traceless, deviatoric part of the |);vj ma-
trix, and n the unit vector normal to the fluid-solid inter-
face. We have also made the important assumption that
the macroscopic pressure gradient (p/L) should be on
the same order as rlv/a in accordance with Darcy's law.
The unit for the stress field quantities p, a, and s is
therefore set to be Lq /pfa . This assumption will be
justified by our consistent derivation of Darcy's law from
Eq. (1).

Given Eq. (1) with the small parameter e, we may ap-
ply the well-known technique of homogenization that
would enable us to systematically justify the neglect of
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the fluid compressibility eff'ect and to decouple the solid
displacement from that of the fluid in the permeability
calculation. The technique involves the following: (1)
the explicit recognition of the two length scales in the
problem by writing all the field quantities as a function
of e plus the two spatial variables x=r/L and y=r/a,
and then expanding them as a perturbation series in e,
e.g. , v=v, (x,y) =vp(x, y)+eve(x, y)+; and (2) let-
ting the gradient operation V act on both the I and the y
scales, i.e., V=eV„+Vy, where Vz(y) denotes derivative
operation with respect to the x (y) variable. By equating
terms with equal powers of t. , we obtain to the leading
order (e ') the following results. First, V~ op =0,
Vy Up 0, and ap = —ppI, where I is the identity matrix.
That means that up=up(x), and ap =op(x) = —pp(x)I
are functions of x only. Second, V~ vp=0; i.e., the fluid
may be regarded as incompressible on the y scale. This
is understandable physically since for co ((e, the
acoustic wavelength k is ))a, which implies a negligible
compressibility eAect on the pore scale. Following Biot,
and Burridge and Keller, we define a fluid displacement
relative to the solid as w(x, y) =i(vp/co) —up(x). Since
V~ v =0 and up(x) is independent of y, we get V~ w =0.
In terms of w, the relevant next-order equation (to e )
1S

Vyp ] iQ) Vy% + co w Vzpp N up. (2)

Because pi and vr are solutions to a set of linear equa-
tions with the source term V pp+co up, they may be
formally expressed as p| =P(x,y) (V„pp+ co up) and
w=W(x, y)(V,pp+co up), where P and W are linear
operators. By volume averaging w over the y variable
(pore scale) and denoting the result as U, we get

U =(W(x,y)) (V„pp+co up). (3)

Since V„pp may be regarded as the externally applied
pressure gradient, Eq. (3) not only gives Darcy's law in

the case of a rigid solid frame (up =0), but also tells us

that to the first order, solid displacement acts as an ad-
ditional source excitation term and therefore does not
enter the generic problem of permeability calculation
By substituting the formal solutions of p| and w into Eq.
(2), we finally obtain the general equations for the linear
operators P and W:

—VP —imV W+co W= —I,

V. W=O

(4a)

(4b)

The x tensor reduces to a scalar number in the case of

with the condition that W=O on pore-solid interfaces.
Here we have dropped the subscript y on the gradient
operators. From Eq. (3) it is seen that once W is ob-
tained from Eq. (4), the macroscopic permeability tensor
x(co) is given by

x(co) =ico(W)

unidirectional, isotropic, or simple-cubic microstructure.
For a cylindrical tube with radius a, Eq. (4) can be

solved analytically to get the known result

x(co) =ia /co[1 —[2/(ico) ' ]Jl((ico) ' )lJp((ico) ' )],

where co is in units of g/pfa, and Jptli denotes the
zeroth- (first-) order Bessel function. In restored units,
the function x has the following asymptotic frequency
dependences to the leading order:

AS+tBS (pf/rt)co, co~ 0
PC

= t (rt/p ) t co t ijD(rt/pf)co i co~ oo (6)

Here A, 8, C, and D are dimensionless const. nts and 5
denotes the cross-sectional area. For co 0, the linear co

dependence of the imaginary part comes from the ratio
of the inertial to the viscous terms in Eq. (4a). For
co ~, the co dependence is purely inertial [v ico-w

-ico(co) ico-'] in origin, whereas the co t varia-
tion arises from a combination of the inertial effect plus
the co

' dependence of the viscous boundary layer
thickness. The transition between the low- and the
high-frequency regimes occur at co= 4. For straight
tubes of noncircular cross sections, dimensional analysis
tells us that only the constants A, B, C, and D are
changed in Eq. (6). In fact, since the limiting frequency
dependences arise from general considerations that are
independent of the microstructure, they should be gener-
ic to the permeability function x(co). Therefore, for an
arbitrary porous medium where S~const, we may write
AS xp and BS Cl, i.e., x=xp+iCi(pf/rt)co for
low frequencies. At high frequencies, because of the fact
that Eq. (4) can be transformed to a Laplace equation
(for p), the constant D ' may be identified as the tor-
tuosity factor a that is electrically measurable, 'p and if
one writes CS 't as J2/aA, then the length A has been
identified as a weighted volume-to-surface ratio for the
porous medium, i.e.,

x =y(K2/aA) (rt/pf) 't'co 'i'+isa '(rt/pf) co

for high frequencies.
To calculate x(co) for porous media with arbitrary mi-

crostructures, Eq. (4) has to be solved numerically. Our
calculations are divided into two parts. In the first part
we consider periodic media with three different types of
microstructures. The first one is a cylindrical pipe with
sinusoidal modulation of its cross section, i.e.,
S(z) =ma [1 —(8/2)(1 —coskz)], where a is the max-
imum radius, 6 is a modulation parameter, and k gives
the modulation periodicity. The second model is formed
by the remains of spheres of radius a (1+6) after six
caps of height a6 have been cleaved off so they can be
fitted on a simple cubic lattice with lattice constants 2a.
The third model is similar to the second one except the
spheres are replaced by octahedrons of half-diagonal
a(1+b') with six caps of heights a8 cleaved off. It is
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noted that 8 is a parameter that controls the porosity p
and the microstructure in all three models. For the
second part of the calculation, what has been learned
about the characteristics of the various unit-cell micro-
geometries will be used to evaluate the permeability of a
network of random permeable elements.

We have formulated a finite-element approach to the
calculation of permeability in periodic models by dis-

cretizing the pore space into tetrahedron elements and

using a fast band-matrix solver" for the simultaneous
solution of w and p at up to 5X 10 nodal points within

an eighth of the unit cell. A complete run for a given
structure consists of 10-15 different frequencies ranging
from t0 (in units of tI/pfa ) =10 to 10 . For the sake
of accuracy, a separate Laplace-equation solver has been
written to calculate the extreme high-frequency (co» 1)
behavior. For the 8 0 case in model II, our value of xo

is also checked to be within 2% of the one previously
known calculation' of xo. Without exception, our re-

sults confirmed the generic asymptotic frequency depen-
dence discussed earlier. That means that if we scale x

by Ko and use ro as well as a in our scaling of tu, i.e. ,

io = t0/(t)p/pf xoa), then

0 — * =-*u G usa ~ ~

90 —,
75—

~ 60—
O
~ 45-
I
VJ

30—
CL

15-

I + i(axe/C~P) 'co, to 0,
x(o)) ='

J2(A2y/atro) 't2a) t2+ito ', ai
(7)

—8 —6 —4 —2 4 6 8

If the dimensionless combinations F~ =axo/C&P and

Fz (A P/axo) 't remain constant under microstructural
variations, then x(to) would exhibit universal asymptotic
behavior. In Fig. 1 we plot all the numerical data for the
three models and various b values in scaled variables. It
is seen that in spite of drastic microstructural variations,
the scaled data points collapse to a single curve not only

at high and low frequencies, but also in the transition
region as well. Indeed, while numerical evaluations of
the parameters yield ten/a —10 -1, C~/a —10
10 ', A/a-0. 1-1, and a-1-20, their dimensionless

combination F] gives a narrow range of 0.5-0.8 for its
values and F2 2.5-3 for models I and II ' and 5-7.3
for model III. Therefore, the four parameters vo, C~, A,
and a can be recombined to yield tro, to„F~, and F2,
with F~ and Fz approximately universal in their values.

We advance the following physical interpretation for
this surprising result. The fluid flow rate Q at any given

pore cross section can be written as Q =SU=S[(ir/P)/
rt]Ap/A&. by use of Darcy's law. If we write Q =R 'Ap,
then in analogy with electrical systems R =(rip/SIr)AL
may be regarded as flow resistance. If now S changes as

a function of z, we can approximate each small segment
AL=Az by a straight tube. By writing S=S(z) and

r =v(z), we get

1 ~L dzR,tr=rt&L —„( ( )

from which one gets x,tt=rt&L/(S)R, tt, where the angu-

FIG. 1. (a) The magnitude and (b) the phase of the scaled
dynamic permeability i(a&). A total of 22 sets of data are plot-
ted. For model I, 8 0.1, 0.2, 0.3, 0.4, 0.5, 0.55, 0.6, 0.65, 0.7,
0.75, 0.8, 0.85, and 0.9. For model II, 8 =0, O. l, 0.2, 0.25, 0.3,
0.35, and 0.38. It should be noted that the throat area shrinks

to zero at 8 J2 —1=0.41 for model II. For model III,
b 0.6 and 0.8. The results that show the greatest deviations
from scaling are those of model III for the reason discussed in

the text. A line representing the solution for the straight tube
would go through the middle of the scaled data points. The
analytic model of x(co) as given by Johnson, Koplik, and
Dashen (Ref. 4) would also agree well with the collapsed data.

lar brackets denote averaging. If now one substitutes for
«(z) in Eq. (8) the asymptotic behavior of the tube solu-

tion, Eq. (6), then the asymptotic parameters ao, C&, A,
and a for rc,s have the following geometric interpreta-
tion:

~, -y~/[&S ')&S&],

C =B(S ')/[(S '&'(S)],

A =J2(S ')/[C(S ' '&],

a =(S ')(S)/D

(9a)

(9b)

(9c)

(9d)

Here it is assumed that the shape constants A, B, C, and

D do not vary by orders of magnitude over the pore
spaces (which is certainly valid for our periodic models)
and therefore may be regarded as constants. In terms of
Eq. (9), F ~

=A /BD and

Fz =(2D/C A) ' '[(S ')(S ')/(S '~'&'] 't'.
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We recognize the fact that the average (S "), where n is
a positive number, is always dominated by the throat
area Sth when there is a large variation in the cross-
sectional area. Therefore, F~ and F2 should stay rela-
tively constant because F& depends only on the shape
constants and F2 cannot vary too much either since if
S =const, F2=(2D/C A) '~, and if S varies by a large
factor, then (S ")=S,h" and F2 again becomes depen-
dent only on shape constants. In the same spirit, A is
noted to be a volume-to-surface ratio for the throat re-
gion [Eq. (9c)] instead of the overall pore space. This
line of argument demonstrates clearly that while the
magnitudes of xo, C&, and a are determined by more
than just the throat area (since they also depend on (S)),
there exist scaled variables rc, ro so that when the
geometry deviates most from a straight tube, K(ru) is
dominated by the throat and its overall behavior thereby
returns to be straight-tube-like again. However, in order
for the above description to be valid, the velocity vectors
near the throat region must be nearly parallel so that one
can use the approximation leading to Eq. (8). A situa-
tion that would violate this condition is where S(z)
varies extremely fast as one moves away from the throat,
e.g. , two pores connected by a small hole in a thin sheet.
In fact, we can detect small deviations from the scaling
behavior for model III because dS/dz in the direction
normal to the throat is large. For the other two models,
on the other hand, dS/dz =0 in the throat region.

Can the scaling behavior seen in periodic structure be
preserved in random systems? To answer this question
we have carried out network calculations using perme-
able elements, each characterized by two parameters xo
and co, '. The parameter values are randomly sampled
from a distribution function. By using exponential and
log-normal distributions and solving essentially the
Kirchhoff equations on 5X5X5 cubic lattices, we get re-
sults that clearly show scaling' and are indistinguish-
able from those in Fig. 1. We therefore conclude that as
long as an individual element demonstrates scaling, the
random network would exhibit the behavior as well. Pre-
vious calculations with tubes of random diameters have
also supported this conclusion.

The observed correlations between the product boa
and a measured throat size in sedimentary rocks pro-
vide an indication that the condition for scaling may
indeed be satisfied in naturally occurring materials. This
can be seen by reference to Eqs. (9a) and (9d):
Whereas both xo and a depend on (S), their product is
proportional to (S ')/(S ) = Sth as observed. Anoth-
er evidence for the scaling behavior is provided by the

constancy of F2 for a variety of rocks as noted in Ref. 2.
In the succeeding experimental paper, it will be shown

that the predictions of the theory are in excellent agree-
ment with measured x (r0) for fused-glass-bead and
crushed-glass samples. Together with the observed
correlations in sedimentary rocks, they demonstrate that
the condition for scaling is satisfied for a plurality of
porous media and therefore only two independent pieces
of microstructural information are generally obtainable
from x(ro). Furthermore, the knowledge about any com-
bination of two parameters (such as xo and a, or a and
A) can yield predictions about the other two (by use of
the F

~
and F2 values) to within a factor of -2. Experi-

mental tests of these and other relations are described
separately.
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