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~e show that in three dimensions the effective electromagnetic actions of the CP' model and of a
charged fermion coincide in the vacuum and one-soliton sectors, to lowest order in inverse mass. This
implies equivalence between the fermion and CP' current operators. In the vacuum sector, the first-

order fermion-current-current self-interaction correction, required for equivalence at next-to-leading or-

der, is also obtained. In the soliton phase, the two next to leading order terms appear with coefficients

differing by simple numerical factors.
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The transmutation of spins and statistics in the one-
soliton sector of the CP' model in three spacetime di-
mensions, and the central role played by the Hopf-
Chern-Simons term have been known for some time. '

Recently, Polyakov has suggested that there is a more
detailed fermion-boson equivalence to leading order in

the inverse mass in this sector. We discuss here a related
ed aspect of this equivalence: We shall compare the
effective electromagnetic actions of the CP ' and
charged-fermion theories in both the vacuum and one-

particle sectors, and establish their equality to leading
order. This means that the ordinary Fermi current

j "(tlr) = tire" tir is equivalent to the CP ' current

for the particular value of the 8 parameter in which the
spin transmutation was originally noted: Current corre-
lation functions are identical to lowest order in (8jm) in

the vacuum and one-particle sectors. In the vacuum sec-
tor, we can also calculate the lowest-order fermion self-

interaction -m j"j„which is required to obtain agree-
ment of the next terms in the effective actions. In the
soliton sector, we find the same structure for the next
two terms, but there are factors of 2 and 3 differences

= ~ trWcs[V]+ F„',(V)+0
24n m

with Wcs[V] the Chem-Simons action
(2)

(3)

In D=3, the result (2) is finite and cutoff independent,
so the coeflicients are precise. The sign of the Chern-
Simons term is correlated to that of the parity-noncon-
serving fermion mass term, while that of F„2,(V) is fixed
(and opposite to that of the Maxwell action); the next
term is of order m e""V„&8,V,.

Consider now the CP ' model,

between their respective coeScients, although these may
be affected by corrections we have not included.

It is well known ' that a charged massive fermion in

D =3 in an external field V„,

X(y) =p(&+ m) ter, D„=i |)„+V„,

leads to an eAective action in the y-vacuum sector which

1s

W~[V] = —i lndet(B'(V) +'m)

X(z,A) = D„(A)z,D"(A)z, —
2

cr(z,"z,—1)+ e""A„B„A„2 8

go go 8x
(4)

where z, is a complex two-component field, D„—:tl„
+iA„, and A„ is to be varied independently; the 8 term is

the Hopf-Chem-Simons invariant, while the Lagrange
multiplier cx enforces the constraint z z=1. Now in

D=2 this theory is renormalizable and it is well known

that the one-loop corrections lead to dimensional
transmutation in which the z field acquires a mass [we
shall follow Coleman's approach (Ref. 6)]. For our vac-
uum sector discussion, we treat z as a field (rather than
consider its soliton aspects) and show that, despite non-

renormalizability for D=3, a similar phenomenon takes
place. That is, we calculate the effective potential V(a)
at one-loop order and show that cr acquires a constant
value which acts like a z-field mass to lowest order. In
terms of a cutoA' A, we find that

——V(a) =, — d'p[ln(p'+a) —lnp']
g2

go
2
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1 1 dV 1

g 2 dO M2 go

leads to

2 4~
(6)

including in V(cr) the linear a term in (4) and rescaling
z z(gp/J2). Renormalizing the coupling constant gp
by

V(cr). [We require jog=i —4rr/g )0, but ~crp(0
might be the signal of a phase transition in the (2+1)-
dimensional CP' model. ] Note that A has disappeared
in favor of the renormalized g and the z field has be-

come eA'ectively massive, with mass @op. To get the
eA'ective action in our external V„, we couple the model
to V„ through a current which we take to be

——v(a) =1

2 g

3/2 3/2

+
4z 6z 6z

Jo'po
4.

J"(A) = e""'B„A,= *F"(A).
20 20
Sx Sn

(8)

where op is the value of o at the stationary point of Thus our Lagrangian becomes (in the approximation
where cr contributes only a z mass)

X(,A;V) =D„*(A) D"(A)z — z +(8/8 )e""(A„ci,A, +2V„B,A. ).

The change of variables A„=C„—V„ leads to

X(z,c—v;v) =z'(z, c,v) —,e~-v„g„v.,
I9

X'(z, c,v) =D„*(C—V)z D"(C V)z —apz —z+
z

e""'C„B„C,;

(9)

(i0)

thus the eA'ective action (choosing iV so that Wcp [0] =0) is

e' " =N 'exp( iOWcs—[v]) (Dz )(Dz)(dC)e4

The z integration only produces a term of order (1/perp)F„„(c—V), and so the leading part of Wcp is

Wcp = —OWcs[v]+O(F„,/ Jag) (i2)

Comparing with the fermionic effective action (2), we see that Wcp = W~ for (and only for) the value 8= T- x. Hence
the current correlation functions are equal in the vacuum sector,

(j"(y(xi)) j'(y(x. )))=(J"(A(xi)) J'(A(x. ))),

where J"(A) is defined in (8).
It is actually possible to go further and obtain the corrections to the free charged-fermion action which will give the

same nonleading (1/~ap)F [V] corrections to the lowest order W~[v] as those given by the CP ' model, (9). On the
fermion side, consider

I[tir] =Ip+I;„,= y(& —m) y+ (c/m) j„(y)j"(y).

Now

(i4)

$2
I (DP)(Dy)e '- 1

——d x (DP) (Dtir)e"
m " sv„(x)av~(x)

lC $2 1
1
——d'x exp + irrWcs[V]+ F&.(V)

m " a V„(x)SV~(x) 24am "

i1+ „F„,(V) exp ~ irr Wcs[v] + F„,(V)
16m m" 24am "

-exp ~
e"' V„a„V,+i + F„2.(V)

8z " 24am
(is)

We have made the obvious expansions in 1/m to obtain the final W~[v] form, and we have dropped a V-independent
contribution. The calculation on the CI' ' side is straightforward: the vacuum polarization by the two charged scalar
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fields in (9) leads, upon integrating out the z fields and setting 0= T- z,

+ i&w [v]
e ' =N 'e '

&
(DC)exp + izWcs[C]— J F„,(C V—)

241c~(Tp

=N 'e '" " „(DC)exp(t-i~Was[C])

x „F„,(C) —2F„,(C)F""(V) +F„,( V)
24m J~()

'"

~ 1XWCS [V]

J F„,(V)+0
Op

Thus for c = —(2z/3)(m/ perp+ I ) we have equivalence
also to the next order, thereby establishing an extended
correspondence between the models. Beyond this correc-
tion, nonrenormalizability renders the calculations un-

reliable, although it may not be so dangerous in a
specific condensed-matter model application, where the
lattice spacing (i.e., the cutoff) is established for some
physical reason.

Let us mention a few other aspects of our results so
far. First, the vacuum sector is really not very sensitive

(in leading order) to the detailed bosonic model (CP')
that we have used, as long as there is a conserved current
and hence a Hopf term, since it is the latter which has
produced the eVBV part of W[V]. That is, any
charged-bosonic theory will only yield (I/m)F correc-
tions to eVBV; this has also been noted in other con-
texts. ' Second, our choice (8) of the current J" in CP'
is motivated by several considerations: (a) it is con-
served (as is the equivalent quantity z Bz), (b) we know

the unique fermionic form of 8'~ for which we must aim,
and (c) J" even resembles the bosonic current
J"=e""8„& in the sine-Gordon- Thirring model for
D=2. Indeed, this resemblance to a truly fermionizable

t
model raises the question of whether Polyakov's associa-
tion z, (x)-z, exp(if"2 dx)~y, in the one-particle
approximation to CP ' resembles the D =2 case:
exp[i f"p+Cy(x, t)]: y (C is a constant given in Ref.
9). Perhaps a vortex picture would supply an associa-
tion between these phases. Finally, one might ask

whether other spins could be associated with other values

of 8 in the vacuum sector of CP '. An example is provid-

ed by replacing the fermion y by a charged vector field

8„. In order to have a parity-nonconserving action, the
8 field must have an Abelian Chem-Simons mass term

X(B)= —
4 F„,(B)F""(8)+me""8„8„8,.

Minimal coupling to V„clearly yields a lowest-order
effective action Wii[V] =8' "e"'V„B,V, with a different
value O'. Although we have not calculated 0', power
counting implies a unique value for it, and hence for the
8 parameter needed to match it in the CP ' theory [here
the current J"[8]-me""8,8,+O(8 88)].

We come now to the one-soliton sector. In the spirit
of Polyakov's scheme, we approximate this excitation by
a point particle, so that in this sector [cf. Ref. (7)]

fI„-„m(X„X")'"+„d'y[J~(y)a„(y)+ (e/8x )e""A„B,A, ],

J"(y)—:J drX" (r)b(y —X"),

where we have dropped the seagull (A ) term in CP ' and J A corresponds to the z td„zA" term in (4). We again cou-
ple the particle to an external V„ field in the same spirit, with a term e""V„B,A, : Thus,

I =m„d 4X +„J"(C—V)„+(0/8 )( ""e'C„B,C, —e""'V„B,V, ).

Hence so we find, upon integrating out C„,

I dC„dX '"'=N, 'e " "' ' dX '"
2 2I.=m ~JX'+' t'd'kJ (k)"" 'J.( k) "J"V, --

ps

(i9)

with N~ a normalization constant; in this sector we take boundary conditions X(r; ) =x and X(rf) =y for the particle.
This amplitude is to be compared to

N~ (dP)(dy)e " tr[y(x)y(y)] =e " " (try(x)y(y))i, (2O)
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where

—( — )d(x —y)e ' r ~(tritr(x)y(y))t =tr — dk V„(k)tr
p+m

1 „1
p'+ m p'+4+ m

+o(v')

m (2p+k) "+ie""p,k,/m
p' —m' " " (p' —m')[(p+k)' —m']

for the fermions with normalization N~.
On the particle side we find, after some calculation from (19) that

—i8wcs d(+) il» —iHwcsG ( ) (21)

where

—,
' [(2p+k)"+trie""'p, k,/3em+0(p /m )]

d(x —y)e ' " Gp (x —y) =
z

+m dkV„(k) +o(v').
aJ p2 m2 J (p' —m') [(p+k)' —m']

Thus agreement between (20) and (21) to lowest r)/m

order requires O=tr to match the Wcs coeIIicients, as in

the vacuum sector (a factor —m has been absorbed in

Np ). Note that this bosonic system has given rise to a
term e""p,k„characteristic of the (parity violating) fer-
mionic sector. However, this choice of 8 gives a
discrepancy for the two terms linear in V„. It is possible
that a more careful treatment (e.g. including the CP' in-

dices) will provide a factor of 2 for these terms in (21)
which would still leave a factor 3 problem in the e""'p k,
term. Perhaps a fermion jj interaction will also be re-
quired as in the vacuum sector. Thus, we see that in the
one-soliton sector, to lowest order, the CP '-fermion
eA'ective action correspondence persists, although we do
find numerical discrepancies at next order (see also Ref.
11).

In summary, we have shown that there is an equiva-
lence at the level of electromagnetic currents and
eA'ective actions between charged fermions and CP'
fields both at the vacuum and the one-soliton sectors to
leading |)/m order. In addition, we have been able to ob-
tain the self-coupling corrections to the fermion action
required to maintain equivalence in the vacuum sector to
next order in 1)/m. In the soliton sector, we found quali-
tative agreement to the next two orders, but with some
(possibly curable) factor 2 and 3 discrepancies in their
coefficients.
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