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Condensation of an Instanton Gas
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The problem of instanton interactions is considered for the case of dissipative tunneling out of a meta-
stable state. The complex ground-state energy is expressed in terms of the pressure of the interacting in-
stanton gas evaluated at a purely imaginary fugacity. With the Yang-Lee theory it is shown that for
sufficiently small barrier height a gas-liquid condensation occurs. As a consequence the decay rate be-
comes much smaller than the corresponding ideal gas result. This is compared with experiments on tun-
neling in strongly damped superconducting quantum-interference devices.

PACS numbers: 03.65.—w, 05.40.+j, 74.50.+r

In many cases tunneling is a many-body problem in
the sense that the considered particle couples to a large
number of degrees of freedom which are not explicitly
taken into account. While this applies to many micro-
scopic problems such as the tunneling of interstitials in
metals, the main recent interest in this subject did arise
from the study of dissipative tunneling of the order-
parameter phase in Josephson junction devices. In this
context the model introduced by Caldeira and Leggett'
has been widely used. It combines the Feynman path in-

tegral elimination of a dissipative environment and the
Langer-Coleman procedure for calculating the decay
rate from the imaginary part of the ground-state energy
via an instanton expansion. Here we will try to investi-
gate the limits of such an approach in cases where the
barrier is no longer large compared to the zero-point en-
ergy and thus the ideal gas approximation for the instan-
tons breaks down. This problem is of particular interest
in situations with large damping where because of the
strong suppression of tunneling by dissipation experi-
mental observations of the decay require small barriers.
It is shown that, indeed, in this limit the instanton gas
may condense into a liquid. The associated tunneling
rate is much smaller than estimated from the ideal gas
approximation which may explain part of the discrepan-
cies with the Caldeira-Leggett theory found in experi-
ments on highly damped SQUID's.

We start from a path integral representation of the
reduced density matrix of a single particle with coordi-
nate q,
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( 0& = Dq(r)exp( —S/h). (1)

Its coupling to a dissipative environment is supposed to
be described by a frictional force —gq, which leads to an
action

MS=„dr q +V(q)
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The potential is assumed to be of the standard cubic
form' V= —,

'
Mtooq (1 —q/qo). From K(r) the ground-

state energy may be determined with use of the Feyn-
man-Kac formula

Eo = —lim —lnIC(r).t~ oo T
(3)

Its imaginary part —defined via an analytic continu-
ation —then gives the decay rate of the metastable state.
In the following we will assume that this procedure
remains applicable in the presence of a dissipative envi-

ronment but emphasize that a rigorous justification for
this is still lacking. The instanton method uses approx-
imate solutions to BS=0 of the form

qtv(r) = gq((r r;), —

where q~(r) is the exact single instanton solution of
BS=0. Performing an appropriate analytic continuation
of the formally diverging contribution from the fluctua-
tions around qz then gives rise to a purely imaginary
contribution to Eo=ReEo —i AI /2 and leads to a decay
rate

I ~
=A exp( —S~/ft ). (5)

Here S~ is the action of a single instanton and the pre-
factor 8 may be determined from the ratio of two deter-
minants. ' The real part of the energy arises from the
trivial solution q=0 and gives the harmonic-oscillator
result (y =ri/M)

dN COp
2

ReEo=E"'=h ln I+~+
2z CO

This expression is, in fact, divergent as m ~ and be-
comes finite only after I+ y/to is replaced by e(ito) with
t. the complex dielectric function.

The derivation of (5) assumes widely separated instan-
tons and approximates the action for the configuration
(4) as Sjv =NS~ Quite generally the invari. ance of the
dissipative part of the action under scale transformations

ki implies that for any extremal trajectory bS=O
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the potential-energy contribution to S is equal to the ki-

netic energy one. This allows one to eliminate the non-

linear terms and write

with the second term describing the instanton interac-
tions. The corresponding dimensionless pair potential is

v (r) =— (2Mco'+rico)qi'(co)coscor,
2 dco

6-0 2~

~here q~(r) and thus q~(co) are real and even. The in-

teraction is repulsive for r smaller than some ip and

obeys w(0) =2S~/h. For large r the
~

co
~

singularity in

the propagator 2Mco +rl
~

co~ leads to an algebraically
decaying attraction

gq )'(co =0)
lim v (r) =-

@A
(10)

While attraction and repulsion have the same weight in

the sense that fp dry(r) =0, in practice the repulsive

part has to be replaced by a hard core in order for the in-
stanton expansion to make sense at all.

With the inclusion of interactions the N instanton con-
tribution to K(r) may be written as K~=Kp(iyp) g&
with yp=I ~/2cop the dimensionless single instanton de-

cay rate and

pL
g~(L) - dxwdp dx ) exp —g v (x; —x, ) (11)~p i(j
as the canonical partition function of a classical gas of N
ordered particles on a line of length L =copr. Introduc-
ing the corresponding grand partition function Y(z,L)

pz Q~(L ) for arbitrary complex z, the
Feynman-Kac formula (3) takes the form

Ep Ep' Acopp(z =gyp),

with p(z) =liml L 'lnY(z, L) the standard expres-
sion for the pressure as a function of the fugacity z. This
thermodynamic formulation guarantees a proper treat-
ment of all collective coordinates by minimizing the ac-
tion with respect to the instanton separations.

Formally we have thus reduced the computation of the
complex ground-state energy to the problem of determin-
ing the pressure of the classical one-dimensional instan-
ton gas for a given complex value of the fugacity. This
gas has a long-range attraction decaying as g~ and
thus will condense into a liquid for suKciently large g.
Nevertheless, as a result of the very small value of yp,
the ideal gas approximation may still be valid, since in

the limit z 0 one expects the system to form a gas in

S = (2Mco + @co) I q(co) I2z

Here q(co) is the Fourier transform of a general trajecto-
ry q(r) which will always approach zero as r
Inserting (4) into (7) we obtain

Sjv =NS )+ h g y(r; —rj ),

1
—(x/xp) '

q (x) =12nav
1+ x/xp

(i4)

with x =copr, xp=4a, and 12nav as the large damping
value of 2S~/h. The corrections to (14) are of order
a and thus are negligible if a»1. We now approxi-
mate the continuum by a lattice gas, replacing the repul-
sive interaction for x & xp by a hard core and introduc-
ing occupation numbers n; =0, 1 for a discrete set of
points x; =ixp. Then

Np

gv (x; —x,)- —g e, g n;n;+„i(j
with

(is)

I —1
e, = —p(lxp) =12nav 0'+ i)'

and Np=L/xp the number of sites. According to the
theory of Yang and Lee the corresponding grand parti-
tion function is then a polynomial of degree Np which
has all its zeros on

~
z

~

=R =e where

(i6)

o = g e, —6+a v[1 —(n/sinhn) '].
a»1

In the thermodynamic limit Np ~ the pressure is an

analytic function of z both inside and outside ~z ~

=R
and may be expressed as

p(z) = d8g(8)ln 1 —2—cose+
op R R , (is)

any case. Indeed the Caldeira-Leggett' argument for
neglecting the interactions can now be stated in the fol-
lowing form: By choosing the ratio v=AV/hcop suf-
ficiently large we can always make yp small enough that
p(z) is analytic in

~
z

~
&yp. Thus the Mayer virial ex-

pansion p(z) =P, =&biz' converges at z =iyp with b~ =1,
bq=fp dx(e ' —1), etc. The corresponding results
r =r, (I —b3yp+ ' ' ) and ReEp=Ep + ha pb2yp then
give corrections to the ideal gas expressions [(S) and (6)]
which can be made arbitrarily small. In the following we
will argue that while this assertion is formally correct, in

practice one is often interested in small U which is true in

particular in cases where the dimensionless damping
a=y/2cop is large compared to one. In such a situation
we will find that below a certain v(a) the gas condenses
even if yp is extremely small and the condition S~/6&&1
is not sufficient to guarantee the validity of the ideal gas
approximation.

To obtain a precise criterion for the radius of conver-
gence of the virial expansion we will confine our atten-
tion to the regime a»1 and then use a lattice gas pic-
ture. For large a the single instanton solution may be
obtained analytically as '

q ) (co) - -', zqpz, exp( —
~

co
~ r, ),

with r, = y/cop. The corresponding instanton interaction
1S
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where g(8) =g( —8) is the density of Yang-Lee zeros
on the circle

~
z

~
=R, normalized according to

fodBg(8)= —,'. It is determined by the cluster in-

tegrals b, via

15

1.0—

gas

g(8) = ——g IR'b, cos!B.1 1

2x K t=]
(19)

As is explained by Yang and Lee the general behavior
of g(8) for a system exhibiting condensation is such that
for small coupling g(8) is concentrated on BL ~ 8 ~ rr.

With increasing cr the Yang-Lee angle BL decreases and

approaches zero at the critical point cr=a, where p(z)
becomes nonanalytic along the real positive z axis. If 0.

increased further, g(8) is distributed more uniformly on
the circle whose radius R rapidly goes to zero. It is this
latter regime which will be of interest to us and where, in

fact, our lattice gas approximation should be rather accu-
rate. In order to estimate the critical point we approxi-
mate (16) by a pure 1 term plus a nearest-neighbor
contribution which makes e~ 0, i.e., we take e, = eLtt/1
for 1~2 with eLR=12zav. The equation determining
the critical value of eLR can then be taken from Ander-
son and Yuval to be

ef.R =2+4exp( —Cef.R/2), (20)

with C 0.577. . . being Euler's constant. Its solution is

efR=3.47, and thus whenever av& (au)'=0. 1 (Ref.
8) we are below the critical point for condensation. As
emphasized above, however, the instanton gas will actu-
ally be in the liquid phase at a fugacity

~
z

~
=yo only if

yo~ R. Now the critical fugacity z, =e ' is z, =0.107
in the approximation of a pure I interaction for I ~ 2
and thus is large compared to any reasonable value of yo.
However, the strong decrease of R with increasing cou-
pling makes it possible to fulfill the condition for conden-
sation yo =R in a certain range of the parameters a and

v. Writing 2/2roo =Due(a) with a function c(a) which

approaches 4%6a / for a» 1, the condition for a
liquid-gas condensation at

~
z

~
=yo may be written as

ln[tuc(a)] =S~/6 —o 6zau(n/sinhrr) . (21)
a)) 1

This equation may be solved graphically, and in the con-
sidered range a&&1 its solution is given rather accurately
by

inc (a)
(22)~» ~ 6rra(x/sinhrr)

The corresponding phase boundary is shown in Fig. 1

where the expected behavior for smaller a follows from
the fact that S~/6 —a should approach a constant larger
than in[Due(0)]. Since inc(a) is concave, the existence
of a solution of (21) for large a necessarily implies that
of a second one at lower a. We have therefore found
that for small enough u—but still in the range
S~/l'i && 1—the instanton gas condenses into a liquid and
thus the ideal gas picture will certainly break down.
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FIG. 1. The gas-liquid phase boundary in the u, a plane.
The full line represents the result (22) valid for strong damp-
ing a&&1, while the dotted line indicates qualitatively the ex-
pected behavior at smaller a.

and

0, fory &R,
lny/R, for y & R,

y, fory &R,
Imp(z =iy) =

2R —R /y, fory & R. (24)

This raises the question whether the instanton approach
may be extended into the liquid phase. Within our sta-
tistical mechanics analogy this is indeed possible. As
pointed out by Yang and Lee, p(z) may be interpreted
as the complex logarithmic potential of an infinite
charged cylinder with line charge density g(8). Since
Re@ =const are the equipotential lines, the real part of
the energy is continuous across

~
z

~
=R. Problems, how-

ever, arise in the decay rate since Imp const gives the
corresponding lines of force which are discontinuous
across the charged circle. Indeed, the associated electric
field E 2p'(z) =E„iE~makes—a jump of magnitude
2'(8) at z =Re' . Using the Cauchy-Riemann condi-
tions, this implies that both R 8, Rep and Belmp jump
by 2rrg(8) in crossing the phase boundary. Thus in a
case where g(8) is distributed over the whole circle (i.e.,

for av & 0.1) Imp can be continuous only at a single
point on ~z ~

=R. In addition Gauss's law for the en-
closed charge shows that Imp is multivalued for

~
z

~
& R, increasing by 2z for each winding around

z =0. In order to extend the instanton expansion into
the liquid regime in a meaningful way, we require Imp to
be continuous across z =iR which is achieved by in-

tegrating the continuous function el~Imp(z =iy) across
the boundary. Since we are interested in the regime
much below the critical point, the expansion (19) will

converge uniformly on the circle and thus in the limit
R 0 only the universal I = 1 term correction to the uni-
form distribution needs to be taken into account. With
this approximation, which neglects the corrections to the
ideal gas results inside i z i

=R we finally obtain
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Thus in the liquid regime v & v(a) the real part of the
energy is reduced compared to Ep" by an amount
—h ron inyp/R. At the same time the decay rate
I =2rooimp(z =iyo) is smaller than its ideal gas value
I"~ =20)pyp valid for yp & R. In the limit yp&&R it ap-
proaches a value 4copR which is completely determined
by the instanton interactions. The precise numerical
value of R depends on the interaction potential also on
short distances and on the way the lattice gas transcrip-
tion is performed. ' Therefore the phase diagram shown
in Fig. 1 is valid only approximately.

Our results indicate that for the measurements on
highly damped SQUID's which have explored the re-
gime a = 4 and v=0.5 the instantons should already be
condensed. In fact it was found that the observed rate
was much smaller than predicted, in agreement with the
present results. As an estimate we use I ~/I =yo/2R for
R«yo, which is approximately equal to (v) '~ c(a)/2
since o is close to S~/h. Thus for the relevant parame-
ters the Caldeira-Leggett theory will overestimate the
rate by about 3 orders of magnitude, the discrepancy be-
ing essentially due to the prefactor. While this would ex-
plain at least part of the disagreement found in Ref. 2, it
has been claimed recently" that the original estimate of
the barrier height was too small and indeed the results
could be understood on the basis of the standard theory.
Regarding, however, that at a»1 the rate is extremely
sensitive to even tiny changes in u, it seems that with
present uncertainties in the parameter values it is hard to
draw definite conclusions. In addition we believe that,
independent of a possible previous experimental evi-
dence, the possibility of a qualitative breakdown of the
dilute instanton approximation is interesting in itself and
should be observable in further careful measurements
along the lines in Ref. 2.

Finally, it should be mentioned that instanton interac-
tions have previously been discussed —for vanishing
dissipation —in the degenerate quartic double well within
a very diff'erent treatment. ' Indeed, the attractive long
distance interaction there was used at all distances,

thereby requiring analytic continuation to prevent insta-
bility. By contrast, the instanton interactions in the
present, quite different, problem were shown to be repul-
sive at short distances and replacing them by a hard core
leads both to well defined instantons and proper thermo-
dynamics.
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