Universality Class of the $d=2 \Theta$ Point of Linear Polymers

Duplantier and Saleur¹ obtained recently exact bulk and surface exponents at the tricritical Θ' point of a self-avoiding walk (SAW) on a hexagonal lattice with random forbidden hexagons. This is not the standard model for polymers at the Θ point, and, as already pointed out,^{2,3} contrary to previous conjectures,^{1,4} the Θ - and Θ' -point behaviors could belong to different universality classes. Here we show that this is most probably the case and that the Θ point could correspond to a nonunitary superconformal field theory⁵ with central charge $C = \frac{1}{2}$. The exponents at the Θ' point, on the other hand, are obtained from a Kac table with C=0,¹ the value appropriate for critical SAW's.⁵

An extensive numerical investigation of the Θ point for a SAW on a square lattice with nearest-neighbor interactions was undertaken recently.⁶ A very accurate Monte Carlo strategy and different methods of enumeration analysis, including an original renormalization group, allowed us to obtain $v = 0.57 \pm 0.015$, $\phi = 0.52$ ± 0.07 , and $\gamma = 1.075 \pm 0.04$. These values, apart from slight discrepancies for ϕ and γ , do not appear inconsistent with $v = \frac{4}{7}$, $\phi = \frac{3}{7}$, and $\gamma = \frac{8}{7}$ of Ref. 1. The situation, however, changes drastically if one looks at the entropic γ_1 and γ_{11} exponents for walks starting at a linear boundary and never trespassing it. γ_{11} refers in particular to the subset of walks which also end at the boundary. For these Θ -point exponents, which were never investigated before, we obtain⁶ $\gamma_1 = 0.57 \pm 0.09$ and $\gamma_{11} = -0.53 \pm 0.10$, which seem hardly compatible with the Θ' -point values $\gamma_1 = \frac{8}{7}$ and $\gamma_{11} = \frac{4}{7} \cdot \frac{1}{1}$ This is strong evidence against the possible identity of Θ - and Θ' -point behaviors.

The above findings also give further support to a recent conjecture, according to which tricritical O(n) models should correspond to superconformal invariant field theories.⁷ This is sure for n = 1 (Ref. 5) and is also consistent with numerical calculations for n = 2.⁷ The existing information leads naturally to the assumption that Cbecomes $\frac{1}{2}$ in the $n \rightarrow 0$ limit, with bulk exponents $v = \frac{4}{7}$, $\phi = \frac{3}{7}$, and $\gamma = \frac{15}{14} = 1.07...$ As to surface exponents, the most natural assumption within the superconformal table^{5,6} for n = 0 seems to be $\gamma_1 = \frac{15}{28} = 0.53...$ and $\gamma_{11} = -\frac{4}{7} = -0.57...$ Indeed this choice is the only one satisfying $x'_{h} = 4x_{h}/x_{t}$, a relation which is always found to be satisfied by the dimensions of energy (x_t) and bulk (x_h) and surface (x'_h) magnetization operators in d=2 conformal invariant theories.⁸ This relation is also satisfied by the exponents of the Θ' point.¹ The agreement of the above numerical values with these proposed exponents is remarkable.

Let us consider the O(n) model (*n*-component spins S_i , $S_i^2 = n$ at each site *i*) with annealed vacancies. This model should reproduce linear polymer statistics, includ-

ing the Θ point, for $n \rightarrow 0$. The partition function reads

$$Z = \operatorname{Tr}_{\{i\}} \int \prod_{i} d \,\Omega_{i} \exp\left(K \sum_{\langle ij \rangle} t_{i} t_{j} \mathbf{S}_{i} \cdot \mathbf{S}_{j} + L \sum_{\langle ij \rangle} t_{i} t_{j} - \Delta \sum_{i} t_{i}\right),$$
(1)

where the trace is over the lattice-gas variables $(t_i = 0, 1)$ and angles Ω_i of the spins. It is easy to show that in the $n \rightarrow 0$ limit, Z reduces to the partition function of an Ising lattice gas, while $\langle \mathbf{S}_i \cdot \mathbf{S}_j \rangle / n$ becomes an interacting SAW correlation function. The C of the tricritical $O(n \rightarrow 0)$ model, as given, e.g., by the finite-size scaling correction to the free energy of an infinite strip of width L, must then be identified with the C of one of the possible fixed points of the Ising model. Inspection of $\langle \mathbf{S}_i \cdot \mathbf{S}_i \rangle / n$ at the paramagnetic and infinite- and zerotemperature fixed points singles out the critical Ising fixed point as the natural candidate to represent the Θ point and leads one to assume for it $C = \frac{1}{2}$.⁷ Indeed the correlations at the other fixed points with C=0 represent either compact or purely self-repelling chains, and the critical Ising fixed point is left by exclusion as the only possibility.

In conclusion, we have presented strong evidence that Θ and Θ' points belong to different universality classes. Numerical results and theoretical arguments also support the conjecture that the Θ point could correspond to a superconformal field theory with $C = \frac{1}{2}$.

- F. Seno, ⁽¹⁾ A. L. Stella, ⁽²⁾ and C. Vanderzande ⁽³⁾
 ⁽¹⁾Instituut voor Theoretische Fysica Katholieke Universiteit
 B-3030 Heverlee, Belgium
 ⁽²⁾Dipartimento di Fisica dell'Università and Centro Interuniversitario di Struttura della Materia I-35131 Padova, Italy
 - ⁽³⁾Limburgs Universitair Centrum Universitaire Campus B-3610 Diepenbeek, Belgium

Received 9 May 1988

PACS numbers: 36.20.Ey, 64.60.Ak, 64.60.Kw, 75.40.Cx

¹B. Duplantier and H. Saleur, Phys. Rev. Lett. **59**, 539 (1987).

 2 B. Duplantier and H. Saleur, Phys. Rev. Lett. **60**, 1204 (1988).

 $^{3}\text{P}.$ H. Poole, A. Coniglio, N. Jan, and H. E. Stanley, Phys. Rev. Lett. **60**, 1203 (1988).

⁴A. Coniglio, N. Jan, I. Majid, and H. E. Stanley, Phys. Rev. B **35**, 3617 (1987).

⁵J. L. Cardy, in *Phase Transitions and Critical Phenomena*, edited by C. Domb and J. Lebowitz (Academic, London, 1987), Vol. 11, p. 55.

 6 F. Seno and A. L. Stella, J. Phys. (Paris) **49**, 739 (1988), and to be published.

 7 C. Vanderzande, Phys. Rev. B 38, 2865 (1988), and to be published.

⁸The dimension of an operator is given by x = d - y, where y is the scaling exponent of the conjugated field.