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Crossover from Singular to Regular Behavior of the Transport Properties of
Fluids in the Critical Region
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We present a solution of the mode-coupling equations for the dynamics of critical fluctuations which

incorporates the crossover from the singular behavior of the transport properties of fluids asymptotically
close to the critical point to the regular behavior of these properties far away from the critical point.
Good agreement is obtained with experimental thermal diffusivity, thermal conductivity, and viscosity
data for carbon dioxide at all temperatures and pressures where critical effects in these transport proper-
ties are observed.
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It is well known that the thermal conductivity and the
viscosity of a fluid diverge at the critical point. ' The
singular critical behavior of the transport properties
arises from the long-wavelength fluctuations of the order
parameter and the other relevant hydrodynamic modes
of the fluid. In the treatment of the behavior of trans-
port properties in the critical region, it is customary' to
separate the thermal conductivity k=K+hX and the
viscosity ri =ri+Ari into normal or background contribu-
tions K, tT and singular critical contributions M, Art. The
critical part dX of the thermal conductivity is related to
the critical part DDT of the thermal diffusivity which
close to the critical point satisfies a Stokes-Einstein rela-
tion of the form

DDT =4k/pct, =Rk BT/6ttrig,

where p is the density, c~ the isobaric specific heat, ka
Boltzmann's constant, T the temperature, ( the correla-

kaT v. , cp(lq —kl)
ADT q

(2tt) 'p " ct (q) k 'ri(k)/p+

tion length, and R =1.01 ~0.04 a universal amplitude.
The viscosity satisfies an asymptotic power-law diver-

gence

(2)

where Q is a system-dependent amplitude and z =0.06
~0.01 a universal critical exponent. ' However, the va-
lidity of the asymptotic equations (1) and (2) is restrict-
ed to a very small range of temperatures and densities
near the critical point. In practice critical enhancements
of the viscosity, and in particular of the thermal conduc-
tivity, are observed over a much wider range of tempera-
tures and densities. In this paper we present theoretical-
ly based equations that include the nonasymptotic criti-
cal behavior and the crossover to the regular behavior of
these transport properties.

The mode-coupling theory of dynamic critical phe-
nomena yields two coupled integral equations for the
thermal diffusivity DT and the viscosity ri:
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where q is the wave number and 8 and p are the polar
and azimuthal angles of k in a coordinate system with
the polar axis in the direction of q. Following earlier
work of Bhattacharjee et al. we have neglected any
frequency-dependent effects on the transport properties
and retained a cutoff wave number qD for the long-range
Auctuations.

The asymptotic solutions of the mode-coupling equa-
tions originally obtained by Kawasaki5 correspond to
qD( ~. To obtain solutions for all qD( we try to solve
the mode-coupling equations by an iterative procedure
while retaining a finite cutoff qD.

As a first iteration we evaluate (3) by introducing into
the integrand the following approximations: (a) Since
Art«ri we neglect the k dependence of ri=ri. (b) Since

2
k sin Hsin p

k DT(k)+(q —k) DT(lq —kl )
(4)

DT«ri/p near the critical point, we neglect the term
with DT. (c) Since c~ && c„,we take c~ to be proportional
to the (symmetrized) compressibility X = (8p/Bp) T,
where p is the chemical potential. (d) For the depen-
dence of X on the wave number we use the Ornstein-
Zernike approximation X(q) =X(0)/(I+q2(2). With an
infinite cutoff this procedure yields the well-known re-
sult ADT(q) =(kaT/6ttri() Qx(qg), where

Ax(x) =(3/4x )[1+x +(x —x ') arctan xl

is commonly referred to as the Kawasaki function. With
a finite cutoff, the integral (3) cannot be evaluated
analytically, but we have found that the numerical solu-
tion is well represented for g ~ qDg by an analytic ap-
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proximant of the form

kaT
DDT(q) = nx(qg;qD5),

6xqg

nK(x;xD) = —,
' (1+x') '~'[yD+y, (I+x') '~'].

Here x =q(, xD =qD(, while the functions yD and yb are
given in Table I.

kaT
~D, =

6zrig z(1+y„)«
fOy

(7)

In the second iteration we retain approximations (a)
and (d), but substitute in the integrands of (3) and (4)
DT(q) =DDT(q)+DT(q), where DT(q) =k/pcp(q),
while ADT(q) is given by (S). For cp(q) we take

pcp(q) =pc, (q)+ Tp '(rJI'/rJT), 'Z(q),

but neglect the wave-number dependence of the isochoric
specific heat c„. In the limit q 0 the mode-coupling
integrals then become

(cos y+y„) (6)dy 4cos y+yd)Dcos y+(y„+yp+y, Yb)cos y+y„y~Dcosy+y, y~q

hri =
ri dy

4» (cos y —1) cos y
15~yD "' (cos y+y„)(cos'y+y„cos y+y„cosy+y„)

'

TABLE I. Crossover functions for A. and g.
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ri =rl exp[zH([y;])], (9)

with the function H([y;I) also defined in Table I. The
derivation of (9) involves an exponentiation to recon-
cile the predictions from the mode-coupling theory for
A1t«ri with the asymptotic power-law behavior (2). We
identify z in (9) with the critical exponent in (2), al-
though strictly speaking we find z =4/15zyD which only
assumes a universal value 8/15m in the limit qD(

We have made a comparison of the crossover formulas
(8) and (9) with experimental data for the transport
properties of carbon dioxide. For this purpose we have
used the universal values R =1.01 and z =0.06 quoted
earlier. The thermodynamic properties have been calcu-
lated from the scaled equation of Albright et a/. ' in the
near-critical region and from the equation of Ely,
Magee, and Haynes" elsewhere. We estimate the corre-
lation length 5 by relating it to the critical part dX of the
dimensionless compressibility ':

with the functions y„yp, y„, y„, and y„as defined in

Table I. In this form the mode-coupling integrals can be
evaluated analytically.

For the thermal diffusivity we obtain

[n([y;I ) —np],
RkaT

(8)
pcp 6KTg

with the functions n([y;]) and np given in Table I. The
presence of the subtracted term np in (8) requires an ex-
planation. Far away from the critical point the mode-
coupling integral (3) yields a small but finite result as
part of the so-called long-time-tail contributions to the
transport properties of dense fluids. s In order to identify
& with the experimentally observed thermal conductivity
far away from the critical point, this part needs to be in-

corporated into the background K (or DT) and to be sub-
tracted from ADT.

For the viscosity we obtain

F(r, s) ]og
(1 2) 1/2

1+r+(1-r ) tan(s/'2)2 1/2

1+r -(1-r ) tan(s/'2)2 1/2
g =gp(~/r) 'y,

with ~=@(T,p) X(T„,p)T, /T, wher—e X =XP,/p,
' and

16



VOLUME 61, NUMBER 1 PHYSICAL REVIEW LETTERS 4 JULY 1988

where the background compressibility X(T„,p) is related
to a reference temperature T, =1.5T, far above the criti-
cal temperature T, . For the critical exponents y, v and
amplitudes I,(o we use v=0.63, ) =1.2415, I =0.052
implied by the equation of Albright et al. ,

' and

(o =0.15 nm as deduced from light-scattering data. ' To
represent the background transport coefficients K and g it
is noted that the excess functions ) —

Xo and ri
—

rio,

where ) o and t)o are the transport coefficients in the
dilute-gas limit at the same temperature, are to a good
approximation functions of the density only. '" In prac-
tice we use

) =)tP(T)+11P+X2Pz+X5P5,

rl =riP(T)+ r11P+ t12P'+ t12P',

(10)

107

with k 1
=3.098 96 x 10, )I,2

=5.578 21 x 10
=2.59898x10 '7, and tel=5. 5934x10, ri2=6. 1757
X10 ", r14=2.643X10 '7 with X in watts per meter per
kelvin, tl in pascals per second, and p in kilograms per
cubic meter. The cutoff qD in our crossover formulas (8)
and (9) is treated as an adjustable parameter determined
from the experimental thermal conductivity data. 's We
find qD =0.23 nm which is indeed a microscopic dis-
tance.

In Fig. 1 we present a comparison of our crossover for-
mula (8) with the thermal diffusivity data obtained by
Becker and Grigull' and with the values deduced from
the thermal conductivity data of Michels, Sengers, and
van der Gulik. '5 The coefficients in Eq. (10) for the
background thermal conductivity were determined from

the experimental thermal conductivity of Michels,
Sengers, and van der Gulik' at p~10 kg/m3 and

p ~ 1000 kg/m and from the data of Le Neindre et al. '7

at temperatures above 450 K where any critical enhance-
ment of the thermal conductivity can be neglected.
Equation (10) represents these thermal-conductivity
data outside the critical region with a standard deviation
o.=0.7%.

Viscosity measurements near the critical point of CO2
have been reported by Iwasaki and Takahashi' and by
Bruschi and Torzo, ' but the data sets are mutually in-

consistent. We have accepted the data of Iwasaki and
Takahashi as the more reliable, since at lower densities

they are in excellent agreement with independent viscosi-

ty measurements of Kestin, Korfali, and Sengers. 2o Ex-
trapolation of the available experimental viscosity data '

outside the critical region to obtain the background
viscosity cannot be done with an accuracy better than
2%. Since the critical viscosity enhancement is very
weak, a more accurate determination of the background
viscosity j is desirable. In the case of the viscosity we

therefore reversed the procedure. Assuming that (11) is

appropriate in the small temperature range 298.15 K
~ T ~ 304.95 K where an anomalous behavior of the
viscosity is observed, we subtracted the predicted critical
viscosity enhancement Ari from the experimental viscosi-

ty data of Iwasaki and Takahashi' and Kestin, Korfali,
and Sengers2o and represented the background viscosity
data thus obtained in terms of (11). In the temperature
range mentioned our equation for rT represents the rT

from Iwasaki and Takahashi with a standard deviation o
less than 0.3% and the data of Kestin, Korfali, and

Sengers with cr=0 7% In .Fig.. 2 we present a compar-

40

IO
8

V)

E

30

a
CL

20

IO'
IO

IOO
I

300

/'c
I 1

500
DENSITY (k g m ~j

I

700 200 300
~c

400 500 600 700
DENSITY (kg rn )

FIG. 1. The thermal diffusivity of carbon dioxide in the crit-
ical region as a function of density at various temperatures.
The experimental data for the thermal diffusivity DT are those
measured by Becker and Grigull (Ref. 16) and the thermal-
conductivity data A. are those measured by Michels, Sengers,
and van der Gulik (Ref. 15). The solid curves represent the
values calculated from (8).

FIG. 2. The critical viscosity enhancement h, g of carbon
dioxide in the critical region as a function of density at various

temperatures. The data points are deduced from the measure-
ments of Iwasaki and Takahashi (Ref. 18) and the solid curves
represent the values calculated from (9). To separate the iso-

therms the values of h, gx10 at 304.65, 304.35, and 304.25 K
have been displaced by +5, +10, and 15 Pa. s, respectively.
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ison of our crossover equation (9) with the critical
viscosity Ari deduced from the data of Iwasaki and
Takahashi. The critical enhancement in the viscosity is

quite small and to obtain adequate resolution we give in

Fig. 2 a comparison with the critical enhancement hri
directly.

From Figs. l and 2 we conclude that we have obtained
crossover formulas which represent the thermal
diffusivity, thermal conductivity, and viscosity at all tem-
peratures and densities where critical effects on these
transport properties are observed.
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