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Long-Range Ordered Phases without Short-Range Correlations
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We present results of Monte Carlo simulations of kinetics of spinodal ordering on a one-dimensional
Ising chain with competing interactions up to third neighbors for Glauber and Kawasaki dynamics. Ap-
plication of these results to the 2H-6H transformation in SiC shows that the arrested state of the trans-
formation possesses long-range order but lacks short-range correlations.

PACS numbers: 61.50.Ks, 64.70.Kb, 81.30.Kf

Solid-state transformations from one close-packed
modification to another in materials like SiC, Zns, CdI2,
cobalt and its alloys, ' and martensites of copper-based
alloys take place through nucleation and propagation
o& stacking faults on the basal plane. These transforma-
tions often get arrested much before completion because
of the formation of domains of the product phase in

different orientations. The arrested state has generally
been described as a heavily disordered state because of
the presence of extensive diffuse streaking along c for
HK. L reciprocal-lattice rows with H —Ke0(mod3)
(Ref. 6) on the diffraction patterns. The diffuse streak-

ing does not disappear even after repeated annealings.
Recently we have undertaken a detailed Monte Carlo
simulation study of the kinetics of domain formation and

growth during the 2H to 6H transformation in SiC
which is known ' to take place above 1600'C. In this
Letter, we show that the arrested state for the 2H to 6H
transformation possesses long-range ordering but lacks

any short-range correlation in the direction of stacking
of the close-packed layers. As such, the arrested state
for the 2H to 6H transformation cannot be categorized
as a conventional crystal or glass.

The stacking sequence of a close-packed structure, in

which atoms may lie in one of the three positions A, B,
or C, can also be described in terms of two state vari-

ables + and —which represent relative orientations of
the pairs of consecutive layers and which for our purpose
correspond to up ( f ) and down (J ) Ising spins. In this
notation, pairs like AB, BC, CA and BA, CB, AC are
represented by + and —symbols, respectively. The 2H
(AB, . . .) and 6H (ABCACB, . . . ) stacking sequences

may therefore be described as containing (1) and (3)
bands, where the numeral within the angular brackets is

obtained by addition of all the consecutive spins of the
same orientation. Consider the Hamiltonian given be-
low with competing interactions between the Zhdanov-

Ising spins in the direction of stacking:

H= —g,g;S;S;+„I„, S; =+'1.

The phase diagrams for this Hamiltonian with r =1, 2,
and 3 are known. ' Both the 2H (1) and 6H (3) phases

appear simultaneously' for r =3 only, and the corre-
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FIG. 1. Phase diagram of an Ising chain with interactions

up to third neighbor (J~ & 0). After Ref. 10.

sponding phase diagram is given in Fig. l.
In order to study the temporal evolution of the 6H (3)

bands as a 2H (1) crystal is quenched to the stability
field of 6H, we have mapped the deformation and layer-
displacement faults postulated by Pandey, Lele, and
Krishna" for the 2H to 6H transformation into Glauber
and Kawasaki dynamics, respectively. Transformation
by the insertion of deformation faults (DF) will be mar-
tensitic in nature since it involves the shearing of parts of
the crystal past each other across the slip plane (shown
below by the vertical line). This is equivalent to a single

spin flip as shown below: perfect 2H structure—

. . . A'a A'a ~A'B A'a
2H with single DF—

. . . A'B-A'B'~C'A C'A

On the other hand, a layer-displacement fault (LDF)
which causes a change in the orientation of a single
close-packed layer (underlined layer shown below) is

equivalent to the exchange of a pair of spins with total
spin conserved': perfect 2H structure—

. . . A+B A+B 2+B A+B
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FIG. 2. Pair correlations for the perfect (a) 2H and (b) 6H
structures. P(m) is defined at integer values of m. The con-

tinuous lines are drawn as guides to the eyes.
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The temporal evolution of 6H domains as a 2H crystal is

quenched to the stability field of 6H will depend on
whether 2H is metastable or unstable. " The condition
for spontaneous spin flip or exchange (spinodal ordering)
to take place at 0 K without any nucleation barrier for
the Hamiltonian given by Eq. (1) with r =3 is

WH

J) J)
WH

Ji J)

J2
J)

—1 ~ 0 (Glauber dynamics),

——~ 0 (Kawasaki dynamics).
Jt 2

J' +iJ"=P(m)+Q(m) exp( i8)+R(m) —exp(i8),

f) 2n(H —IC)/3, and p=xh3, with h3 being the con-
tinuous variable along c*. The pair correlations P(m),

These conditions fix the spinodal line which separates the
metastable and unstable 2H regimes for the two dynam-
ics under consideration. We have studied the dynamical
evolution of the 6H domains at 0 K in the spinodal re-
gime with Js/Ji =J2/Ji ——,

' via the standard Monte
Carlo technique. For this, we select the sites in an en-
semble of 1200 layers using pseudorandom numbers

[1,1200] and then effect the spin flip or exchange if the
energy cost of the process at the selected site is zero or
negative. We have monitored the average 6H domain

size, number of 6H clusters, excess energy over the 6H
ground state, and three pair correlation functions as
functions of time, where the unit of time is taken as one
Monte Carlo attempt-step per site (MCS/s). If we

define P(m), Q(m), and R(m) as the probabilities of
finding AA, BB, CC; AB, BC, CA; and AC, BA, CB type
pairs of layers with m-layer separation, respectively, the
diffracted intensity from a stack of N layers can be ex-
pressed as '

lV —
1

I(h3) =N+2 g (%—m) [J' cosmic —J' sinmts],
m l

where

FIG. 3. Variation of mean 6H domain size (D), number of
6H clusters (N, ), and excess energy over the 6H ground state
(~) with time in MCS/s. Curves marked with ~ and 0 corre-
spond to Kawasaki and Glauber dynamics, respectively. Note
that D, N„and ~ level oif beyond 8 MCS/s for the Kawasaki
dynamics. For the Glauber dynamics, the temporal evolution
of D follows a power law with a growth exponent of 3 at late
times.

Q(m), and R(m) have fixed periodic values for m
=0, 1(mod2) and m =0, 1,2, 3,4, 5(mod6) for the perfect
2H and 6H structures, respectively [see Figs. 2(a) and
2(b)). This is not so for the faulted crystal and we have
monitored the time evolution of these pair correlations in

our simulation studies.
Figure 3 depicts the time evolution of the mean

domain size, the number of 6H clusters, and the excess
energy over the 6H ground state, as determined by
averaging over 50 configurations for the two dynamics.
It is evident from Fig. 3 that for the Kawasaki dynamics,
the configuration freezes just beyond 8 MCS/s with a
mean domain size of -9 layers. Since the concept of
unit cell for the average structure would have been valid
if the 6H unit cell could repeat itself at least once, i.e., if
the mean domain size were over 12 layers, an average
domain size of -9 layers implies a lack of short-range
ordering. This is confirmed by the behavior of pair
correlation P(m ) obtained by averaging over 1000
configurations, shown in Fig. 4(a). A comparison of the
short-range correlations in Fig. 4(a) with those given in

Figs. 2(a) and 2(b) for the perfect 2H and 6H structures
clearly shows that the frozen configuration lacks short-
range ordering. Intriguingly, the frozen configuration
cannot be termed glassy' either, since it still possesses
long-range ordering beyond m =rn'=12. This is thus in

sharp contrast to the glassy frozen systems observed' in

binary alloys undergoing phase separation after being
quenched to zero temperature. Let P, and P, be the
values to which P(m) converges for m even and odd, re-
spectively, beyond m m' that manifests the long-range
ordering. After simple mathematical manipulations, Eq.
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(2) now reduces to (for N »p)
(m' —1)/2

I(h3) =1 N—+ g (N —2p) [3[P,(2p) —P, ] cos2pp+2J2~ sin2pp]
p~]

(m' —1)/2

+ g (N —2p —1)[3[P,(2p+1) P,—]cos(2p+1)p+2J2~~~ sin(2p+1)p]
p~]

+N '[(3P, —1)sin [ —,
' (N —2)p]/sin p+(3P, —1)cospsin [ —,

' (N —3)P]/sin pj. (3)
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We have taken m' as odd and N as even numbers, and p
varying as 1 ~p& (N —2)/2. Thus the presence of
long-range ordering manifests itself through the sharp 8
peaks in reciprocal space at 2H positions, with weights
different from the perfect 2H structure, as shown in Fig.
5(a) for various instants of time. The first two terms in

Eq. (3) are responsible for the diffuse streak along c*
joining the b peaks as well as the elongated spots midway
between the 8' peaks.

For the Glauber dynamics, there is clear late-stage
domain growth and a concomitant decrease in the num-
ber of 6H clusters due to Ostwald ripening after the ini-
tial spinodal ordering (see Fig. 3). We have verified the
late-stage domain growth up to 1000 MCS/s. Also, the
three pair correlations converge to 3 for values which

gradually increase with time as can be seen from Fig.
4(b) for P(m). The convergence of pair correlations to
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implies that the probability of finding the mth layer
in A, 8, or C orientation has become equal, indicating to-
tal absence of long-range ordering. The Fourier trans-
forms of the pair correlations computed at various inter-
mediate stages of transformation using Eq. (2) are
shown in Fig. 5(b). It is evident from this figure that,
unlike for Kawasaki dynamics, the transformation com-
mences with an initial broadening of 2H reflections. At
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FIG. 4. Variation of pair correlations with time for (a)
Kawasaki dynamics and (b) Glauber dynamics. For the
Kawasaki dynamics, the scale for m is condensed beyond the
point marked by a break. Note the regularity in P(m) beyond
this break point. O~ to Ov are the origins at the five instants of
time in both the figures. Short-range correlations correspond-
ing to a six-layer repeat period can be easily seen in Fig. 4(b)
at r 20.0 MCS/s. The short-range correlations at r &.0
MCS/s corresponding to the frozen configuration shown in Fig.
4(a) do not show any translational periodicity.
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FIG. 5. Intensity distributions along diH'use streak for (a)
Kawasaki dynamics and (b) Glauber dynamics at various in-

stants of time.
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later stage, diffuse 6H reflections near hq =+ —,',
~ —,

' (mod2) positions start appearing.
As shown elsewhere, ' 2H reflections are experimen-

tally found to remain unbroadened during the 2H to 6H
transformation in SiC although their intensities do
change. Further, diff'use elongated spots approximately
midway between the 2H reflections develop in the course
of transformation. Both of these observations are in per-
fect agreement with the theoretically computed intensity
distribution shown in Fig. 5(a) for the Kawasaki dynam-
ics. The experimentally observed diffuse elongated spots
do not split into the distinct 6H reflections even after re-
peated annealings, confirming the arrest of transforma-
tion which can be explained in terms of Kawasaki dy-
namics only, since for the Glauber dynamics there is a
clear late-stage domain growth. In the light of the tem-
poral evolution of pair correlations given in Fig. 4(a) for
the Kawasaki dynamics, we may thus conclude that the
arrested state for the 2H to 6H transformation in SiC
possesses long-range ordering but lacks any short-range
correlation in the direction of stacking of close-packed
layers. The lack of short-range ordering in the frozen
configuration is actually due to the frustration intro-
duced by the extended metastability of the 4H phase
deep in the 6H phase field up to J2/J~ = —,

' with respect
to spin-exchange dynamics: Spin exchange at an isolated
site leads to local 4H ordering (two 2 bands) which once
formed can exist metastably unless and until spin ex-
change takes place at three-site separation from the ear-
lier site transforming the 4H-like ordering region into
6H. On the other hand, the spin-flip dynamics can only
lead to a 3 band in one step, and hence there is no frus-
tration.
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