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Fluctuation properties of positive-parity states in 2°Al from the ground state to the resonance region
(0-8 MeV excitation energy) are found to be consistent with the Gaussian-orthogonal-ensemble version
of random-matrix theory. Although isospin is an approximately good quantum number in this system,
the fluctuation properties of the combined sequence (7=0 and 7 =1 states) are consistent with those of
a single Gaussian-orthogonal-ensemble sequence. This agrees with earlier predictions by Dyson and
Pandey and with recent analysis by Guhr and Weidenmuiller.
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The topic of quantum chaos and searches for quantum
systems which display chaotic behavior have been the
subject of much discussion recently.!*> One approach is
to study the quantum analog of a system whose classical
behavior is known to be chaotic; the canonical example
of this approach is the quantization of Sinai’s billard by
Berry.? Bohigas, Giannoni, and Schmit* studied the lev-
el fluctuations of the quantum Sinai’s billiard and con-
cluded that they were “fully consistent” with the predic-
tions of the Gaussian orthogonal ensemble (GOE) of
random-matrix theory.’> They offered the conjecture
that this relationship (between time-reversal-invariant
systems whose classical analogs are chaotic and the
GOE) is universal. Additional results for different sys-
tems have tended to support this conjecture,® although
there is evidence that the fluctuation properties may not
be fully governed by random-matrix theory (see, e.g.,
Casati, Chirikov, and Guarneri’). Berry8 showed that
certain systematic deviations from random-matrix theory
[the A3(L) parameter—a measure of spectral rigidity—
falls below GOE predictions] can be explained semiclas-
sically. Wintgen® demonstrated a connection between
classical periodic orbits and the long-range correlations
in quantum spectra which A; measures.

In this circumstance, numerical “experiments” are ex-
tremely valuable. For example, Seligman, Verbaarschot,
and Zirnbauer'®!'! considered the transition from regular
to irregular spectra for a class of Hamiltonians; Wintgen
and Marxer!? examined the level statistics for the aniso-

tropic Kepler problem; Meredith, Koonin, and Zirn-
bauer!>'* considered the spectural fluctuations and
the overlap distribution for the three-orbital Lipkin-
Meshov-Glick model. In each case, a classically chaotic
system corresponds to GOE statistics, while a classically
regular system corresponds to Poisson statistics.

Nuclear energy levels provide the best experimental
data thus far for tests of random-matrix theory. The
most extensive set of experimental data used for compar-
ison with GOE predictions has been a collection of high-
quality neutron and proton resonance data. The fluctua-
tion properties of this ensemble of energy levels have
been studied with a variety of measures'>!®; the data
show both the short- and long-range order required by
GOE. It would be extremely interesting to apply these
techniques to low-lying nuclear states. The requirements
that the data sets be pure (correct spin assignments) and
complete (no missing levels) impose severe limitations;
von Egidy and co-workers'”!® have compiled such level
schemes for low-lying states in many nuclei. Preliminary
analysis by von Egidy and co-workers'”!® and by Abul-
Magd and Weidenmiiller ' suggest that regularity is ob-
served for rotationallike states, while other states are
completely or partially chaotic. This effect has been ex-
plored in the context of the interacting-boson model by
Paar and Vorkapic. %

For each nucleus the experimental sample sizes for the
low-lying states are extremely small. What is needed is
a nucleus for which all of the levels are known from the
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ground state to the resonance region. With sufficient lev-
els, one could study fluctuation properties of low-lying
states and resonance states and (if regularity was ob-
served at low energies) examine empirically the transi-
tion from regularity to chaoticity. Of course, there is no
such ideal nucleus. For medium and heavy nuclei, there
is a several-MeV gap between low-lying states and reso-
nance states. For light nuclei, the level density is far
below the ideal, but at least it is possible in principle to
obtain all of the levels. We believe that at present %Al
most closely approximates the ideal nucleus. For 26Al,
the first 100 positive-parity states have been identi-
fied.2!"2> The spectroscopic assignments have been
confirmed by detailed comparison with the nuclear shell
model.2® (The negative-parity states are on almost as
firm ground experimentally, but there is no detailed com-
parison with theory available.) These data provide the
first opportunity to examine the fluctuation properties in
the same nucleus from the ground state to the resonance
region. In addition, the isospin of the positive-parity
states is known; the T=0 and T =1 states coexist
throughout the entire energy region. Thus 2°Al also pro-
vides the first opportunity to study empirically the fluc-
tuation properties of states with a (known) broken sym-
metry.

First we describe the corrections required to obtain a
set of data suitable for analysis of the fluctuation proper-
ties. This analysis yields fluctuations consistent with
GOE for all energies. The data are also consistent with
GOE independent of whether the isospin quantum num-
ber is considered. This latter result is consistent with
earlier theoretical predictions by Dyson?* and Pandey?’
and with recent analysis by Guhr and Weidenmiiller. 26

To evaluate the fluctuation properties, we consider the
nearest-neighbor spacing distribution, the linear correla-
tion coefficient between adjacent spacings, and the
Dyson-Mehta Aj statistic. The prescription is to take all
of the states of the same J”, and to determine a set of di-
mensionless spacing parameters {x;}, with x;=s;/D,
where s; is the ith nearest-neighbor spacing and D is the
average spacing. However, D is a function of excitation
energy, since the average level density p(E) changes rad-
ically over the 8-MeV range of excitation energy. To re-
move the energy dependence, the data were fitted with
polynomials in energy, thus avoiding the use of sem-
iempirical level-density models. Data are available for
five different positive-parity sequences (J*=1%-57%);
the number of levels in each sequence ranges from 12 to
25. Each J” sequence was fitted separately; satisfactory
fits were always obtained. To avoid possible introduction
of bias in the data (e.g., long-range correlations created
by overfitting of the data and reduction of the fluctua-
tions), careful attention was paid to the values of X2 and
to the physical reasonableness of the smooth curve for
p(E).

Initially we ignored isospin. After correction for the
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energy dependence of the average level density, a set of
x’s was obtained for each value of J". A nearest-
neighbor spacing distribution was generated for each se-
quence; errors were determined with the bootstrap
method.?” The overall spacing distribution was obtained
by averaging of the results from the different values of
J”. In Fig. 1 the nearest-neighbor spacing distribution
P(x) and the cumulative probability are plotted versus
x. The Poisson and Wigner distributions are shown for
comparison. The data clearly prefer the Wigner (GOE)
distribution; comparison of the cumulative probability
distribution with the Wigner and Poisson distributions
yields a ¥% per point of 1.0 for the Wigner and 8.1 for
the Poisson. The apparent “bump” is small x is due to
spacings which appear to be randomly distributed in
both energy and J*. The agreement with GOE is good
at all energies—no energy dependence was observed in
the fluctuation properties. The linear correlation coeffi-
cient between adjacent spacings is —0.24 +0.08, in good
agreement with the GOE prediction of —0.27.

Next we consider A3, as a measure of the long-range
correlations. The function
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FIG. 1. (Top) The nearest-neighbor spacing distribution

P(x) plotted vs the dimensionless spacing parameter x;=s;/D
for the positive-parity states in 2Al. The energy dependence
of the average level density is first removed and a set of x’s ob-
tained for each J* sequence. The resulting sets of x’s are then
combined. The Poisson and Wigner distributions are shown for
comparison. (Bottom) The cumulative probability (=i/N for
the ith spacing, where N is the total number of spacings, which
are ordered according to the size of x). The integrals of the
normalized area under the Poisson and Wigner distributions
are shown for comparison.
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measures the least-squares deviation of the function
N(E) from a straight line for the interval [a,a+LD] on
the energy axis. Following Bohigas, Giannoni, and
Schmit,* we chose successive intervals which overlap by
LD/2. (One wishes to improve statistics, but avoid the
introduction of correlations.) For a given set of {x;} for
a given J”, a value of A;(L) is calculated by averaging
over the different intervals for that L. The results for the
different J” sequences are then combined. The results
are shown in Fig. 2. For comparison, the GOE predic-
tion (eclnL for large L) and the classical limit
[A;(L) =L/15] are also shown. The experimental re-
sults again agree very well with the GOE prediction (x2
per point of 2.5) and not at all with the classical value
(x? per point of 176). Qualitatively similar results were
obtained for the negative-parity states.

We conclude that all of the states in 2°Al, from the
ground state to the resonance region, display GOE fluc-
tuation properties. These results confirm (with a much
larger sample size in one nucleus) the suggestions by von
Egidy and co-workers'””'® and by Abul-Magd and
Weidenmiiller!°: Levels in nuclei may be chaotic even in
the ground-state domain. Much more extensive data and
analysis are clearly needed to consider more detailed
questions about different classes of states and types of
nuclei.

At first glance, what seems surprising about these re-
sults is that isospin has been neglected. Isospin is
thought to be a rather good but approximate symmetry 3
in 2°Al and a very useful concept even in the resonance
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FIG. 2. The Dyson-Mehta Aj; statistic plotted as a function
of L for the positive-parity states in 2Al. The classical limit
[A3(L)=L/15] and the GOE prediction [A3;(L) <InL] are
shown for comparison.

region. Experimentally, the positive-parity states seem
(except for a few states of the same J” which happen to
lie very close in energy) to have a well defined isospin.
Suppose that isospin was a perfect quantum number.
Then (for example) levels with the same J*, but different
T, should not repel each other, and the fluctuation prop-
erties would not be those for a single GOE sequence.
The absence of level repulsion has been verified experi-
mentally for states of different J and different parity, but
not empirically for a broken symmetry such as isospin.
These data provide the first opportunity to perform such
a test. (Tests with other quantum numbers may be pos-
sible in the future—for example, examination of the
fluctuation properties of rotational states in heavy nuclei
might provide similar tests with the K quantum num-
ber.)

The combined data set (7=0 and T=1) agrees ex-
tremely well with GOE. When the entire analysis is re-
peated for the 7=0 states, one obtains essentially identi-
cal results. For example, the X2 per point for the cumu-
lative probability distribution for 7 =0 is 0.9, compared
with the value of 1.0 obtained for the combined (7T=0
and T =1) sequences. In spite of the limitations of sam-
ple size (107 positive-parity levels, with 75 T =0 states),
the difference between the GOE and Poisson distribu-
tions is so great than an unambiguous choice can be
made between these alternatives. The difference be-
tween one pure GOE sequence and a mixture of two
GOE sequences in the appropriate combination is not
nearly as large. However, all of our tests of the 2641
spectrum are consistent with the fluctuation properties
being independent of isospin, in spite of the fact that iso-
spin appears to be a rather good quantum number in
%Al for most properties. These results are consistent
with a prediction due to Dyson?* which was generalized
by Pandey.?® Pandey says, “when the symmetry is ex-
act, the fluctuations are those of a random superposition
of independent spectra . ... As the (symmetry breaking)
grows, we recovery very quickly the asymptotic fluctua-
tions.” The present results are the first experimental
data to test these predictions. Our results are consistent
with expectations—the breaking of a symmetry intro-
duces a very rapid change in the fluctuation properties.
Recent analysis by Guhr and Weidenmiiller?® of the
fluctuation properties as a function of the isospin-
symmetry breaking predict the observed behavior. Thus
it may not be so surprising that GOE fluctuation proper-
ties are observed even in the ground-state domain of nu-
clear physics.
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