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Dipole-Quadrupole Interaction in Spherical Nuclei and Berry Potentials
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We show that SO(3) gauge potentials arise in the Born-Oppenheimer description of the interaction
between the dipole and quadrupole vibrations in even-even spherical nuclei and derive the eA'ective Ham-
iltonian for the quadrupole motion,
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It has recently been appreciated that gauge potentials,
the Berry connections, can arise in the adiabatic descrip-
tion of physical situations involving two diA'erent time
scales. ' Such a situation can occur in spherical nuclei
~here the frequency of the quadrupole oscillations is typ-
ically much smaller than that of the dipole excitations.
The coupling between these two modes is one of the
mechanisms responsible for the broadening of the giant-
dipole line, and, in view of the two time scales in-

volved, a Born-Oppenheimer type of approximation
seems best suited to analyze this eAect. The purpose of
this Letter is to show that Berry connections do indeed
occur in such an approach.

We shall describe the fast dipole vibrations in terms of
three collective coordinates at„specifying the relative
distance between the centers of mass of the neutrons and
the protons, and the slow quadrupole vibrations in terms
of the five tensor component a2„ introduced in the multi-

ple expansion of the nuclear surface. The Hamiltonian
will be of the form

with

a2o =Pcosy, a22 =a2 —2 =(P/J2)siny,

Q2] =Q2 —
1
=0. (s)

The fast Hamiltonian HF(at, a2)—:Hl(a~)+Ht2(al, a2)
can then be written in the form

HF(a~, P, y) = g tr +—K;al';
1 2 I

281 2

with

HF(a~, a2) =U($, 0, y)HF(at, P, y)U (y, 0, y),

where

—ipJ ' /h —iHJ ' /h —i' ' /h
U($, 8, tlt) =e * e ' e

is the rotation operator that acts on the dipole variables
only, while HF(a~, p, y) describes an anisotropic harmon-
ic oscillator, the principal axes of which coincide with

those of the laboratory. In a Cartesian basis,

H =H
~ (at ) +H2(a2) +H t2(at, a2).

In the harmonic approximation, K;(P, y) =Cl 1+ cos y—4K

J30Ci
2%i

3

Hq(aq) = gtrq„trq„+ gaq„aq„, X = 1,2, (2)P P 2 0 Ps

H12 = X(—1)"(1»lt —v
I 2lt)at. atp —va2 —p

E
Js~

(3)

It is convenient to replace, as usual, the five Q2„'s by two
deformation parameters, p and y, that specify the shape
of the ellipsoid in the frame coinciding with the principal
axes, and three Euler angles (&, O, y) that give the orien-
tation of the intrinsic frame with respect to the laborato-
ry,

4

a2t ZvDt v(k~~~ W) a2vr~ (4)

where n» is the momentum conjugate to Q», while 8&

and C& are, respectively, the inertia and restoring force
parameters. The interaction term H12 is uniquely speci-
fied from invariance considerations if one limits oneself
to cubic terms containing no time derivatives:

If we denote
~ n;p, y) by the eigenstates of HF(attp, y),

those of HF(al, a2) will be given by U(&, 9, tlt)
~ n;P, y).

We shall be interested in states
~ 1;;P,y) having one di-

pole phonon along one of the three principal axes
(i =1,2, 3). They are generated by our letting the crea-
tion operators

r &/4

BtK; trt;

4h (46 B]K;)'"

act on the deformed ground state
~ 0;p, y), which is

defined through the condition a; (P, y) ~ 0;P, y) =0, and

they have the energies

e;(p, y) =—ltt
K;(P, y) (»)

2 8)

a;"(p, y) =

Since these three states are quasidegenerate, a thorough
mixing should occur under the slow motion. We can
thus expect that a non-Abelian Berry connection will
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3
= 2 Y (P y. (() 8 Y)U(4.8.Y) I I 'P y). (i2)

Because of the rotational invariance of H, the total angu-
lar momentum

J())y J(2) (i3)

is conserved. Moreover, since the fast eigenfunctions
U(&, e, y) I I;;P, y) are invariant under combined rota-
tions of the dipole and quadrupole variables, the action
of J on + reduces to that of J( on the y;(a2)'s. A par-
tial separation of the variables will thus result from diag-
onalization of (J )) and J,(, whence, with f2 J(J+1)
and l2M representing the respective eigenvalues, one ob-
tains

w JM(p, y, e, e, v)

show up in the eA'ective Hamiltonian for the quadrupole
oscillations.

We shall seek eigenfunctions of the total Hamiltonian
(1) with the following form

e(a(,P, y, ((,8, y)

ground state, we shall concentrate on J=1 states. It is

extremely important that the total wave functions, given

by (12) and (14), should have the right symmetry prop-
erties. There are 24 ways of defining the coordi-
nates(lj, y, &, 8, y), each of which corresponds to a
different way of attaching a right-handed frame to the
principal axes, and it must be ensured that the total wave
function is invariant under the 24 transformations that
merely relabel and reorient the intrinsic axes. It has
been shown that these are generated by three operators
R(, R2, and R3. If we denote by g(, g2, and (3 the prin-

cipal axes with respect to which the coordinates

(P, y, &, e, y) have been defined, R( corresponds to the re-
versal of the g2 and $3 axes, R2 is a rotation of )r/2 about
the (3 axis, and R3 is a circular permutation of the in-

trinsic axes: ((), (2, (3) ((3, g), (2). It therefore
suffices to enforce the stability of 4'(M under these three
transformations. For J 1, the following constraints on
the expansion coefficients F;~ result from imposing the
invariance 0'~~ under R~ and R2.

F)0(P, y) F2o(p, y) =F3) (p, y) F3 ((p, y) =-0, (Isa)

1/2

Z F'N(P, y)DMJv(e, e, y). (14)
8n w- —J

F — (P.y) - F(P, y—),

F2( (P, y) -F2 —
( (P, y) -lF( ( (P, —y),

F30(P, y) -F30(P, —y).

(15b)

(isc)

(isd)

Since the giant-dipole resonance in spherical even-even We are thus left with only two functions, namely
nuclei is excited by absorption of El photons on a J=0 F))(p, y) and F30(p, y), and the complete wave function

reduces to

+)M(«;p, y, e, e, V) = 3

8n
IF(((p, y) [DM( (p, 8, y) DM )(p, e, y)]U—(p, e,—y) I

1)',p, y)

+)F()(p, y) (DM((~-, 8, y)+DM ((~,e, y) ~-U(~, e, y) I 12,p, y&

+F3p(p, y)DM 0(y, e, p) U((t), e, p) I 13;P, y&~

Finally, invariance under R3 implies the relations

F((()8, —y) = —(1/J2)F3p(P, y+ 2&/3),

F (P) (, y+2z/3) = —(I/J2)F30(P y),

(i7a)

(i7b)

which, together with (lsd), completely specify F()(p, y) and F3p(p, y) in the entire (p, y) domain once they are known

for —)r/3 ~ y ~ z/3.
In terms of (P, y, &,e, y), the quadrupole Hamiltonian naturally splits into a vibrational and a rotational part,

ll 1 tl „.„82 C
2~2 p4 tip (lp p2sin3y rly 0)y 2

and

3 J(2) 2
l2 (i9)
2

where J(=482p sin (y —2zl/3) and J( is the com-
ponent of the quadrupole angular momentum operator
along the intrinsic axis g(.

3

g 0,';op; =Ey, , (20)

are obtained by projecting the complete eigenvalue equa-

i The coupled Born-Oppenheimer (BO) equations for
the slow motion,

1470



VOLUME 61, NUMBER 13 PHYSICAL REVIEW LETTERS 26 SEPTEMBER 1988

tion, H%'=E%', on U(&(i, 8, l(() I lj;p, y&:

Hj'ol( (p, r, y, 8, V ) =&1,;p, ylU'(&(, 8, l()(H2+HF)lj((p, y, &((, 8, l(»(&(,8, lj ) I I(;p, r&

This is the appropriate point for introducing the relevant Berry connection, which is defined as

Aj; =&1j;P, y I Ut((t(, 8, y)dU(&, 8, y) I 1;;P,y&.

The exterior derivative d that acts on the slow variables can be decomposed as

(21)

(22)

(24)

with

(A()„=-&1,;p, r I
J("3/~

I 1;;p,.&. (2S)

In accordance with general results, A is seen to be invariant under rotations of the quadrupole variables. A little alge-
bra now shows that

d dP +dy + Z a((R(,
B B (23)
p y

where the al('s are the Maurer-Cartan forms dual to the vector fields R([coi(R ) b( ). Since the eigenstates I 1;;p, y&

are real, the P and y components of Aj; vanish. Moreover, since UtR(U = —J( ' /i(1, one has

3

Aj( g co((A()j(,
1

Ri+A
H bj(T"' +"g + V" (p )

2

with

C3
&,-(p, y) =,(p, y)+ p' b- — &1,;p,yl, +, , I I;p, r&

Bp p' By'

q2 + &1,;p, yl (J(t"/a)'l l;;p, y&
—(A(2),;

2 I S(

(26)

(Tl)ji i(~jm~in ~jn~im) (31)

are the generators of SO(3). It is equally straightfor-
ward to show that

1/41/4
Km + K„

Km
, +,

y

K
~

3
60 'J K2

p((p, r)- 1

2
(29) (32)' 1/4 ' ' 1/4

Kn Km
q((p, y) =—1

K„Km where (j,m, n) is a permutation of (1,2,3).
A complete reduction of the slow-motion equations is

achieved upon collecting all these results and inserting in
(20) the explicit expressions for lj(; that one reads from
(16). After elimination of the angular variables, one is
left with two dynamical equations for Fii(p, y) and
F3p(p, r) that are to be solved for —(r/3 ~ y( z/3. The

(30b)
I

first one reads

and (l,m, n) is a cyclic permutation of (1, 2, 3). A stan-
dard calculation yields

& 1,;P, r I
J("'/&

I l;P, r &
=pi(Ti) j(,

& 1,'p, r I
(J("'/s) '

I l;p, r&

=p('(T( )J, +q,'(1+T('),;,

In order to compute explicitly (A()J; and the matrix ele-
ments of (J(' ), it is convenient to express the rotation where the matrices
generators for the dipole variables in terms of the
creation and annihilation operators (10),

J( ' —i i'3 [p((a~i a„—a~a„i) +q((a~ a„—a t a„i)], (28)

where

H'b+ (p )+h E 3 + 1+ 1 +h qi+ p2 q2+2p3 q32 2
'

2 2 2 2+ 2 2 2+ 2

120 K2 K2 K2 2 J' g3
F»(P, y)

Fll(P —y)+ F3p(P. y) -EFii(P y) (33), P3 O' P2
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The second one is obtained from the latter by first re-

placing y by y
—2tr/3, and then coming back to y

through Eqs. (17) and the symmetry properties of the
various functions of y(Kt, 2i, and so on). We will report
elsewhere on the numerical solution of these equations.
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