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Brownian Motion in a Rotating Fluid: Di8'usivity is a Function of the Rotation Rate
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The phenomenological relations between thermodynamic fluxes and forces are normally assumed to be
invariant with respect to arbitrary motion of the frame of reference. We describe a breakdown of this
invariance strong enough to be observable. It is shown that the diffusivity in a rotating fluid is anisotrop-
ic and also smaller in magnitude than in a fluid at rest in an inertial frame, giving rise to a diffusion ana-
log of the Hall effect. For large Brownian particles (e.g. , biological macromolecules) the diffusivity may
decrease by 50% at the rotation speeds achievable in ultracentrifuges.

PACS numbers: 05.40.+j, 66.10.Cb

Consider diffusion of an initially concentrated distri-
bution of solute in a quiescent liquid. The solution of
this problem is well known (the "point source") and de-

scribes a monotonically expanding spherically symmetric
"cloud" of the solute particles.

Now consider the same experiment in a body of fluid

which is rapidly rotating as a whole, or, in other words,
is at rest with respect to a rotating, noninertial frame of
reference. Will there be any changes in the way the
"cloud" expands? (We assume that the densities of the
solute and the solvent are perfectly matched, so that
there is no sedimentation due to the large centrifugal
forces. ) In other words, is diffusion influenced by the

rigid-body rotation of the system?
Such an influence would, of course, be forbidden if one

were to require that the phenornenological relations be-
tween thermodynamic fluxes and forces (often called
"constitutive relations" ) be invariant with respect to ar-

bitrary motion of the frame of reference. All of the es-
tablished constitutive relations (Fourier's law for heat
flux, Fick's law for diffusion flux, Navier-Stokes's law for
viscous stress, etc.) satisfy this requirement, and it is

normally imposed (often implicitly) when postulating a
new one. Recently, however, it has been the subject of
some controversy. '

The above requirement is called differently by differ-
ent authors, e.g. , "principle of material frame
indifl'erence" (MFI), "Euclidean invariance, " "objectivi-

ty,
" "frame invariance, " "rheological invariance, " "ad-

missibility, " "rotational invariance, " "Poincare invari-

ance, " etc. The "rational mechanics" school presented
it as a law of nature, and this point of view was for a
while prevalent in rheology, but the situation is chang-

ing now. The main argument of the rational mechanics

school, viz. , that MFI is a consequence of the fact that
the material behavior is independent of the motion of an

observer, has been shown to be based on a misconcep-
tion, which arose because of the vague language of
definitions. (That argument is still very much in use,
though —see, e.g., Ref. 6.) It has been pointed out by

several workers that MFI cannot be exact, since the mi-

croscopic dynamics that gives rise to constitutive behav-

ior obeys Newton's second law, which is not frame
indifferent. However, MFI can be a very good approxi-
mation, essentially because the macroscopic rotation is
usually extremely slow on the time scale of the micro-
scopic motion (which is often the molecular time scale).
In fact, no violations of MFI have ever been observed ex-
perimentally, to the best of my knowledge.

In macroscopic physics, MFI is invariably used nowa-

days when formulating constitutive relations in viscoelas-
ticity or for anisotropic fluids such as liquid crystals, or
when constructing memory functions for irreversible pro-
cesses in hydrodynamic media such as dielectric liquids
or magnetic colloids, etc. Better understanding of the
nature of MFI and of the circumstances under which it
may break down is thus of considerable interest.

The question raised in the beginning of the Letter is
also important in other contexts: If diffusion is influ-

enced by the rigid-body rotation of the system, the
theory of the ultracentrifuge, used in biochemistry and
polymer science for the characterization of macro-
molecules, needs modification.

The answer to the above question is, in fact, positive:
The viscous drag on a Brownian particle (and thus the
diffusion coefficient according to the Einstein relation) is
influenced by the rigid-body rotation of the system, as a
result of the Coriolis force effect on the Quid motion
caused by the particle's translation. The rest of the
Letter explores the phenomenon in some detail; in partic-
ular, the dependence of the "cloud" expansion on the
speed of rotation is calculated.

Consider diffusion in a dilute solution at uniform tem-
perature, and assume the perfect matching of the specific
volume, so that the pressure diffusion (i.e., sedimenta-
tion) is absent. The diffusion flux j is then due to the
concentration gradient alone, and is given by Fick's law
(in arbitrary molar, mass, number units since the solu-
tion is dilute)

j= —D grade,

where c is the concentration and D is the diffusivity ten-
sor.

In the absence of rotation, D is an isotropic tensor and
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can be written as D =DI, where I is the identity tensor
and D is the familiar scalar diffusion coefficient.

In a frame rotating with angular velocity 0 = Qk with

respect to the inertial frame, the diffusivity is no longer
isotropic and may depend on the magnitude and direc-
tion of 0 (but not on the distance from the axis of rota-
tion, since the effect is due to the Coriolis force alone).
Let us write for this case

D=DQ,

where the dimensionless tensor Q contains the effect of
rotation and reduces to I when 0 0.

Q may depend on 0 only via some dimensionless

group, and for Brownian diffusion in a liquid dimension-
al considerations suggest that this group must be
Qa p/rt, where p and rl are the density and viscosity of
the liquid, and a is the (effective) radius of a diffusing
particle. For notational convenience, in what follows we

shall use as a parameter not this group itself, but its
square root X= (Qa p/rt) '/ . Thus we have

Q =Q(k, k).

It is easy to see that the above dependence can be rep-
resented, without loss of generality, in the form

g =Q/I+ Qsk 8k+ Qg A,
A

where Ar = er „k„and er „ is the Levi-Civita alternat-
ing tensor. The scalar functions Qr(A, ), Qs(X), Q~(A, )
must, of course, reduce to I, 0, 0, respectively, when

0.
The component matrix of Q takes an especially simple

form in an orthonormal basis with one basis vector being
k, e.g. , in a Cartesian or cylindrical coordinate system
where k is the unit vector in the z direction

Qr Q~
—

Q~ Q(

Qr+Qs

Not surprisingly, the above form is reminiscent of the

form of thermal conductivity in some crystalline materi-
als (see, e.g. , Carslaw and Jaeger, ' p. 40). In the latter
case, the antisymmetric part is often eliminated (i.e., Qz
is set equal to zero) by an appeal to the Onsager princi-
ple. " Our situation is different: In a rotating frame the
Onsager principle can be written as'

g;, (o) =g,;(—o),
and is thus satisfied by Q with arbitrary Qz.

The diffusion flux can now be written as

j D[grV
—c+Qs(k Vc)k+ Q~ (Vc) x k].

Note that the last term in the above equation describes a
diffusion analog of the Hall effect.

The diffusion equation follows in the form

=D[grV c+QsV (k Vc)k].
8t

In a Cartesian (or cylindrical) coordinate system with
the z axis parallel to k, the last equation simplifies to

t)c 2 8 c=D QrV c+Qs a" .
'

and can be written as

alt Bx2 tly2 tlz2

where Di =grD; Di =(gr+—Qs)D.
Thus, if Qs e0, the expanding "cloud" in the diffusion

from a point source will not be spherically symmetric,
but instead will have a shape of an ellipsoid of revolu-

tion, with its axis of symmetry parallel to the axis of ro-
tation. The mathematical solution of this problem is

easily obtained by rescaling of the coordinates and thus
reducing the problem to the ordinary diffusion equa-
tion'; the final result for the concentration distribution

I is

c(r t) = exp
M

S~3/2D D i'2(t —«) 3'2
1

4(t —tp)

(x —xp) '+ (y —yp)
' (z —zp) '

+
Dg DII

M
g 3/2D D i/2(t t ) 3/2

exp'— 1

4(t —tp)

(r —rp) —[k (r —rp)] [k (r —rp)]

D~ DII

where M is the total amount of the diffusing substance.
The propagator of a Brownian particle G(r, t I rp, tp) is
obtained by putting M =1 in the above expression.

This is about as far as we can go on the basis of sym-
metry alone.

As shown by Einstein' in 1905, in the case of the
Brownian diffusion in liquids the diffusion coefficient D is

related to the mobility of the diffusing particle b as
D kTb, where k is the Boltzman constant and T is the
absolute temperature; the mobility is defined by the rela-
tion U =bF, where U is the velocity of the steady motion
of the particle through the liquid under the influence of
the force F. For a spherical particle of radius a, the
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Stokes formula gives b =1/6zqa.
The generalized form of the Einstein relation is

kT (2)D=kTB=
6zga

where the mobility tensor B is defined by U =8 F, while

R is the dimensionless resistance tensor which deter-
mines the drag force Fd

Fd = —6zgaR U.

For a spherical particle of radius a, in the absence of ro-
tation of the system, we have R=I. For a nonspherical
particle R is not isotropic, but since the orientations of
the diffusing particles are random, we still have D=DI,
and the effective radius of the particle is now inferred
from the diffusion measurements as

kTa=
6zgD

The effective (averaged over orientations) R is again
equal to I if a is determined by the last expression.

If the fluid is now in rapid rotation as a whole, the mo-

bility of a particle will change, and so will D. From Eqs.
(1) and (2) we see that Q =R '. Note that X can be
expressed as

kTp' n '

6~~'"D '

so that the particle dimensions are eliminated.
It is clear that R is equal to R for a spherical particle,

and so to complete the analysis we need a solution of the
following problem: find the drag force on a spherical
particle moving through a rotating fluid, i.e., find the
correction to the Stokes law due to the rotation of the
reference frame in which the fluid is at rest.

The solution of this problem is available in the fluid

mechanics literature'; the result is

R =I+~~+O(~'),

05 3
7 5

3 05

Neglecting the O(k ) term, one finally obtains

1+52/7

(1+5k/7) + (3k/5)
1 1+sk/7

1+41 /7 (1+5k/7) + (3k/5)
(4)

3~/5

(1+s~/7) '+ (3~/5) '

where the component matrix of 5 in a basis whose third
basis vector is k has the form

Two remarks are in order:
(i) It was tacitly assumed in the derivation of (2) that

F+Fd =0. Strictly speaking, the total force on a spheri-
cal particle is not zero but equal to —', m(20 x U), where
m is the mass of the sphere, 2QXU is the Coriolis ac-
celeration, and the factor —,

' is needed to account for the
virtual mass effect (the densities of the fluid and of the
particle being equal). However, this correction is obvi-
ously O(X ) and therefore can be neglected together
with the similar term in (3).

(ii) Strictly speaking, the expressions (4) are valid to
O(k) only, and thus could be written as

Qi=1 —
7 X, Qs=7~, Q~=s~, (s)

which could also be obtained immediately by noting that
to this order

g =(I+~~) -'=I -~~.
I choose to use the form (4) since experience with
small-parameter expansions like (3) in other contexts'
shows that they may provide results in reasonable agree-
ment with experiment for values of the parameter much
higher than one would generally expect. Thus, form (4)
might be compared to data at values of A, or order 1,
whereas (5) could not.

The described effect may be quite significant at the
highest rotation speeds of commercially available centri-
fuges (0 up to 10 s '). For a particle of radius a =5
pm at 0 =10 s ' in water, or a similar low-viscosity
liquid, we have k =0.5, and so the diffusivity may be re-
duced by about 30%. The anisotropy of diffusion should
also be observable: for X =0.5, one finds that D& is less
than D~~ by about 10%.

Nevertheless, no experimental observations of the
phenomenon appear to exist, which is not surprising
since the question raised in the present work has not
been asked before. In an experiment designed to check
the present results, the perfect density matching would
be desirable in order to avoid sedimentation. One way to
achieve this would be to follow Cheng and Schachman, '

who used polystyrene latex particles as a solute and a
mixture H20-D20 as a solvent. It ~ould be necessary,
however, to find materials that can be matched not only
by densities but also by compressibilities, since the
diA'erence in the latter leads to the breakdown of the
density matching in very high pressure gradients. '

It should be emphasized that the importance of the de-
scribed effect is by no means limited to cases where sedi-
mentation is absent: When sedimentation and diffusion
occur simultaneously in a rotating fluid, both should be
treated correctly, and this cannot be done (except for
X((1)unless the described effect is taken into account.

Some puzzling anomalies have long been observed in
the results of the ultracentrifugation analysis of large
DNA molecules at high speeds; the current explanation
of these is based on the idea of the distortion of the
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shape of a macromolecule by flow. ' It is quite likely
that these anomalies, at least in part, are due to the de-
crease of mobility and diffusivity in a rotating fluid:
Large DNA molecules may have molecular weight of or-
der 10", and contour length up to few centimeters; the
radius of gyration of such giant molecules may easily
reach values of order 10 pm and higher. '

As mentioned before, invariance of the phenomenolog-
ical relations between thermodynamic fluxes and forces
with respect to arbitrary motion of the frame of refer-
ence (MFI) has been the subject of a considerable con-
troversy. Examples of violation of this invariance have
been derived from the kinetic theory of gases, but the
predicted effects are much too small to be observed,
while the validity of the derivation has been questioned
by the advocates of MFI on the ground of the inherently
approximate nature of the kinetic theory. ' The
phenomenon described in the present work is thus of fun-
damental importance: It provides a clear example of the
failure of the invariance, and the eff'ect is so strong that
it should be measurable. The physical origin of the
efl'ect is equally manifest: Note that a p/ri is the time
scale of the microscopic motion (the relaxation time of
the viscous flow around the Brownian particle), which

may range from the extremely small values typical for
molecular motion (when the particle is a small molecule
itself) to values of order 10 s (for a large Brownian
particle in a low-viscosity liquid). The parameter X thus
indicates how rapid the macroscopic rotation is on the
time scale of the microscopic motion.
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