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We show that strong spatial correlations in a random resistor network can dramatically alter its trans-
port properties. We calculate the average logarithmic resistance of a topologically one-dimensional
model characterized by a random multiplicative process. We find a transport exponent that depends ex-
plicitly on the form of the spatial correlations; we also find that this problem is related to dijon'usion in the
presence of correlated random fields.

PACS numbers: 05.40.+j, 05.60.+w

The eA'ect of spatial disorder on the properties of ma-
terials has become an active area of recent investiga-
tion. ' Spatial disorder is generally taken to be random,
for example, by introduction of random bias fields which
alternate from point to point in the system. To study
physical properties such as transport, most previous work
has been based on variations of the classic percolation
model in which the disordered material is treated as an
uncorrelated network of random bonds (e.g. , resistors)
that are either open or blocked (finite or infinite resistivi-
ty). ' Thus the spatial disorder is assumed to be com-
pletely uncorrelated. However, in many real disordered
materials, such as polymers, porous materials, and amor-
phous systems, ' the spatial disorder is correlated. For
example, if we model the permeability of a porous rock
by an array of resistors whose resistances are chosen ran-
domly, then it is possible to find huge resistances neigh-
boring tiny resistances. Such configurations cannot
occur in nature since the permeability of a "crack,"
while random, cannot fluctuate arbitrarily. The spatial
disorder is correlated.

Here we introduce a topologically one-dimensional
model that encompasses the essential physics of correlat-
ed spatial disorder but is simple enough to be treated
analytically. Consider a set of % resistors in series,
where the resistance Rj of resistor j changes in a corre-
lated fashion,

corresponds to a step to the left. We consider two cases:
(i) [rIj uncorrelated and (ii) {zij with long-range spatial
order.

We will be interested in the result of a typical mea-
surement of R„,=R«&(N), the total resistance of the
¹esistor chain. Our model represents a random multi-

plicative process, in contrast to the familiar random-walk
model, which is a random additive process. In a random
walk, the mean-square displacement, for example, coin-
cides with the most probable value. In the present mod-

el, and in random multiplicative processes in general, it
is natural to find quantities whose mean and most prob-
able value differ markedly.

If we consider the resistance Rt, t of the entire chain,
we find that its average is dominated by improbable
configurations of the rj (e.g. , rI =1 for all j), for which
the value of the resistance is large. For case (i), a direct
calculation yields (Rt) = [ —,

' [(1+e)+ (1+e) ']j ' ', re-

sulting in ln(R„&)-N.
The typical measured value of Rt, t is dominated by its

most probable value; the probability of obtaining for Rt,t

a value that differs by an order of magnitude from the
most probable value, vanishes with N. The typical value
of a single resistor, Rtyp is presented by the logarithmic
average,

R&„,-exp[(lnRiv)l —(1+e)

RJ+t—= (1+e) 'Ri. (la) Here X(N) represents the rms displacement in the N-

step walk defined by the [rjj,

~l —
1

Rt =R |(1+e) (lb)

Here t. )0 is arbitrary, and r~ is chosen randomly to be
+1 or —1 (see Fig. 1). Because neighboring resistors
may only differ by a factor of (1+e), this model ensures
a smooth spatial variation of the resistance. From Eq.
(la), the resistance of bond l is

R: I

I I I
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Note that Irjj can be viewed as generating a walk;

ij =+1 corresponds to a step to the right and i~ = —
1
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I +I +I

FIG. 1. A realization of the present model with a=1.
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The number of such typical resistances (i.e., typical
walks) is of the order of N. Hence from (2) the loga-
rithmic average (InR«t& scales as

(1nRt, t) -1n(NRt„~) -X(N)ln(1+ e) + lnN, (4)

1 Zz(e '",
Q I 1

are correlated through the power-law relation

(5)

where the quantity X(N) will depend on the details of
the correlations of the z~ to be determined below. The
quantity (lnR„,) is sensitive to the details of the ensem-
ble, while the quantity (R«t) is simply dominated by one
configuration in the ensemble.

In order to calculate X(N), we must define the distri-
bution of the [z~} For. case (i), where the [z~} are un-

correlated, X(N) =JN, which is the familiar random-
walk result. For case (ii), where the [zj} have long-
range correlations, X(N) depends on the details of the
correlation. We assume that our large but finite system
is part of a much larger periodic system of size Q))N.
We further assume the distribution to be symmetric un-

der reversal of all the r~ and that the Fourier transforms
of the [zj},given by

The exponent P determines the correlation parameter k
and therefore d„. We find that in the ferro case ()I, )0)

1, P~2,
d = = ' 2/(4 —P), 2 ~ P ~ 3,

2

1+X
2, P~3,

(12)

while in the antiferro case (X (0)

2/(P —1), 1 ~ P ~ 2,

1+),2. P~2. (13)

Equations (12) and (13) are obtained by one's noting
that (z&z z) is the F-ourier transform of (zozt& and this is
related to P(m) as defined by (11).

Computer simulations agree with our predictions.
Figure 2 is a double logarithmic plot of (lnR«t) and the

consider the full chain of N sites to consist of strings,
each of m sites, where all r~ in one string have either the
same signs (ferro case) or alternating signs (antiferro
case). The length m of each string is chosen from the
power-law ("Levy flight") distribution

P(m) -m

(zq z q& -1/q", - (6)
IO

for small q. If two neighboring z~ tend to be of the same
sign (which we call the ferro case), then X)0, while if
two neighboring zj tend to be of opposite sign (the anti
ferro case), then A. (0. For uncorrelated [zj}, we have
k =0.

It is straightforward to verify that IO
3

[X(N)]'= g(z, z, ) if(q, N)
~

',
0 q

where

f(q N)= (e "'—"' 1)/(e-—"—1)

(7)

IO
2

In R&

When 0 ee we find, on substituting (6) into (7) and
converting the sum to an integral, that the dominant
contribution scales for large N as

[X(N)l'-N'" [~& —1].

Combining (9), (3), and (4) we find

(1nR«t) -N '+ + lnN 4, ) —1].

(9)

(10)

10

We have confirmed the validity of (10) numerically.
To this end, we had to generate a set of jz~} that have
long-range correlations as in (6). Now each
configuration is in 1:1 correspondence with a ¹tepran-
dom walk: [X(N)] is the mean-square displacement,
characterized by the fractal dimension d„,
[X(N)] -N ". From (9), d„=2/(1+X). Therefore
we can generate a distribution with any desired X by gen-
erating the corresponding walk with 1&d„&~. We

10 IO

FIG. 2. Plot of (lnRtot) and (ln Rt,t) —(lnRt, t) as functions
of the size of the system % for a=0.5 and P =1.5 correspond-
ing to A, =1 (ferro case}. We note that the best slope to
(lnRt, t) is slightly lower than the correct value due to the
correction term discussed in the text.
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FIG. 4. The connection of the present model to diAusion in

the presence of a spatially correlated bias field can be seen by

connecting in series 2 ' parallel equivalent branches between
each node. The ratio of probabilities W, ,+1/W, ,—

1 is the ratio
of the corresponding number of branches on either side of
node j.

IO 10 10 10

tain Wt i+1=(1~E)/2 where E—:e/(2+e).
The mean logarithm of the time the random walker

takes to travel a distance L along the chain is proportion-
al " to the fluctuations of the field biased against the
walker,

(15)
FIG. 3. Double logarithmic plot of (ln Rtot) (lnRt, t) for

e=0.5 and various values of P. Ferro case: P=1.5 (+), 2.5

(j), and 3.5 (&). Antiferro case: p=1.5 (0) and 2.5 (0).

W&, 1/W, , + )
= (1+e) "—, (i4)

where now e plays the role of a local bias geld. From
the normalization condition W~ ~+)+ W~ ~ ) =1, we ob-

fluctuation (ln R„t)—(lnRt, t) for the ferro case with

P =1.5 (corresponding to A, =1) as a function of N. Both
curves have the same asymptotic slope, 1+X=2, as can
be seen by following the procedure used to derive Eq.
(10). For (lnR„,), the convergence to the predicted
slope is slow due to the lnN correction in (10), while the
fluctuations show the predicted slope already at small
values of N.

Figure 3 shows the fluctuations of (inR«, ) for P =1.5,
2.5, and 3.5 in the ferro case (corresponding to X =l, —,',
and 0) and for p=1.5 and 2.5 in the antiferro case (cor-
responding to X = ——,

' and 0). The numerical results are
in excellent agreement with the predictions, Eqs. (10),
(12), and (13).

Study of the above correlated resistor chain also pro-
vides insight into another interesting physical problem:
diA'usion in the presence of quenched correlated disorder.
We shall see that this significantly generalizes the classic
Sinai model for diA'usion in the presence of uncorrelated
random fields.

Consider a random walker on a topologically one-
dimensional system. The probabilities W, , + ~ of hop-

ping from site j to its two neighbors are proportional to
the inverse of the corresponding resistances between the
sites (see Fig. 4). '' Hence

Accordingly, the first passage time in the diff'usion prob-
lem plays a similar role as the resistance in the resistor
problem. Correspondingly, when we take into account
correlations between the local bias fields [which are
determined by the correlations between the i; see Eq.
(6)] we obtain on substituting (9) into (15)

Int) -L t'+'lt2

The Sinai result is obtained for the average of the dis-

placement for fixed t If we a.ssume that our result (16)
will hold for fixing t and averaging L, we recover the
Sinai result in the particular case A, =O (uncorrelated
fields). The conditions under which the averages can be
changed from fixed L to fixed t will be discussed else-
where.
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'There is much work on the eAects of correlations in spatial
disorder on the nonclassical properties of disordered but not
completely random systems. One example is the Ziman theory
of nonclassical transport in liquid and amorphous metals. See,
e.g. , the theoretical work of D. Nicholson and L. Schwartz,
Phys. Rev. Lett. 49, 1050 (1982), and references therein. Here
we treat a rather diAerent problem, that of providing an under-

lying microscopic model for correlated spatial disorder that can
be solved exactly.
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