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Conformal Spectra of Polymers on a Random Surface
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We consider polymers (self-avoiding walks) on a randomly triangulated planar surface. The partition
function of L polymer lines tied by their extremities, in a fluctuating metric, is calculated exactly. The
exact infinite conformal spectra so derived are in complete agreement with the exponents found recently
for 2D quantum gravity by Knizhnik, Polyakov, and Zamolodchikov.
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In the past few years, two distinct fields of statistical
mechanics have been the object of considerable theoreti-
cal developments: conformal invariance for two-

dimensional (2D) critical phenomena, ' and the theory
of random surfaces, both being actually related to
string theories. Conformal theories are based on an

algebra of operators, ' whose scaling dimensions form
the so-called Kac table, and are in direct relation to the
critical exponents of the associated statistical models.
This has led to a blowing of exact results, and even to the
hope of classifying all critical conformal theories in 2D.
On the other hand, random surfaces have long been

thought to be related to some 2D conformal theories,
but a direct relation was lacking. A simple discretization
of the Polyakov string model was given by a model of
dynamically triangulated surfaces, where an abstract 2D
random simplicial lattice is embedded in d-dimensional
space. " This equivalently describes the quantum gravi-

ty where the fluctuations of the metric are coupled to a
matter d-component free field. Note that pure gravity is

described by an ensemble of abstract (planar) graphs
without embedding. In the study of critical properties of
a random surface embedded in d space, ' exact results
have been obtained for the string susceptibility exponent

g in d= —2, or d=0,

Recently, new statistical models have been proposed
by Kazakov, who solved the Ising model on a random 2D
lattice, and the Q=0, 1 Potts models. Thus a com-
pletely new field is now opened by the transfer of all

standard 2D statistical models from the plane to a ran-
dom surface, and the study of their critical properties.
This corresponds to study phase transitions coupled to
the fluctuations of the intrinsic metric of the 2D space,
i.e., statistical mechanics in the presence of quantum
gravity. Very recently, in two breakthrough papers, '
Knizhnik, Polyakov, and Zamolodchikov (KPZ) suc-
ceeded in building the associated conformal theory
describing the critical behavior of such systems. The
usual conformal dimensions h, of the Kac spectrum in

the plane are converted by the "gravitational dressing"
into new ones h, satisfying '

~ —~ to' =~(I —~)/g', (2)

where g' is related to the central charge of the statistical
model (the matter field) by'

c(=d) =13—6g' —6/g'= I —6(1 —g') /g' (3)

(g'—=k+ 2 = 1 —y„„„sin KPZ ' ). For the massless
Gaussian field describing the fluctuations of a surface
embedded in d dimensions, c=d is the number of de-

grees of freedom.
Now we remark precisely that the embedding dimen-

sions d= —2, 0 of Eq. (1) where an exact solution to
random surfaces could be found are also the central
charges of dense (c = —2) or dilute polymers (c =0),
e.g. , self-avoiding walks (SAW) corresponding, respec-
tively, to the m =1 and m =2 nonunitary minimal mod-

els just preceding the Friedan, Qiu, and Shenker classi-
fication for rn ~ 3. ' This suggests that an exact solution
to polymers on a random surface may also exist. We
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give indeed that solution here.
Before proceeding to the calculations, let us recall the

conformal spectrum of polymers in the plane. " The key
idea is to consider the correlation function GL of L poly-
mer lines of self-avoiding walks of Auctuating lengths
tied together at their extremities X and Y, i.e., a "water-
melon network""' (Fig. 1). The total length of the L
walks, controlled by a fugacity K, diverges at a critical
value K, ', where the correlation function GL decays
algebraically like

GL(X —Y) =(yL(X)pt. (Y))-
I
X —Y I

"', (4)

where xL is the scaling dimension of the conformal
operator pL associated with the L-line polymer vertex. "
For fugacities K) K, , the SAW Pll the plane (dense
polymers), and new anomalous dimensions xL appear. "
In terms of the Kac table' h~, ~ =[(m+ 1)p —mq] —I/
4m(m+1) of central charge c=1 —6/m(m+1), one
has"

xL =2ALt)0=(9L —4)/48, m =2, c =0,

tq=(Li —4)/16 m =1 c = —2
1

This can be generalized to the whole O(n) model, "
whose n 0 limit describes SAW.

Let us now consider polymers on a surface with Auc-

tuating metric. We show in this Letter that this model is

exactly solvable. We find the exact universal conformal
dimensions dressed by gravity for the dilute and dense
cases, respectively,

AL =(3L —2)/8, AL =(L —2)/4.

It is easy to check that these results are among the
solutions of KPZ Eqs. (2) and (3) where we insert the
exact polymer results (5) in the plane for" g'=1+1/m

(c=0, K=K, , dilute SAW) and g'=2 (c = —2,
K )K, , dense SAW). Let us now proceed to the ex-
act solution.

Take as the ensemble of planar random lattices the set
of all p graphs G with the topology of the sphere. Its
partition function is

z(p) =g e Pl&I—
oSG

where I G I is the number of vertices of the graph G, and

S(G) is the order of the syminetry group of G. The
series (7) converges for all values of the "cosmological
constant" p larger than some critical p, . At p p,+, a

singularity due to infinite graphs appears and the singu-

lar part of the string susceptibility behaves as

(8)g —g 2z/g p
2 (p p )»t~ns

with y„„„s=—
—,
' [Eq. (1) for d=0].

Further, we shall need the partition function of ran-
dom graphs with n external legs

G. (P) = e -Vl G I

n leg planar G

This quantity was calculated in the beautiful paper'
through the large-N limit of an N XN matrix integral. It
has an integral representation

t 2b

G„(p)= dip(k)iL ",
where p(X) is the density of eigenvalues'

p(~) =(I/2n) [1 —e t'(a+b+~)]

(io)

x [(k —2a) (2b —k)] ' (l l)
and a and b are functions of p through

a+ b = ere~, 2e ~ = cr(1 —cr) (1 —2tr),

8=a —b =2(1 —2o')

The value of the critical fugacity e '=(12m 3) 't is
found from dP/der =0.

Let us now put self-avoiding walks on the abstract
random graphs. We consider the watermelon polymer
network"' with L polymer lines I;I' (l = 1, . . . , L) go-
ing from the point i to the point j of the random lattice
along the links of the lattice (Fig. 2). The sum is per-
formed over all polymer configurations and planar w

lattices

(i2)

where K is the fugacity associated with the total length

I
I I of the L SAW's. To calculate this quantity, we ap-

ply the same trick as for calculating maximal trees on a
random 2D lattice. We first sum over all the planar
graphs which form the L connected pieces of the lattice
bounded by two successive polymer lines I ' and I" '+'

FIG. 1. L-watermelon network in the plane (L =3).
FIG. 2. L=3 polymer lines on a randomly triangulated

spherical lattice, made of p vertices.
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(recall that G has the topology of the sphere and I and I ' are also the boundaries of the external domain on Fig.
2), and then over the lengths of the polymers. We find

oo

ZL(p, K)= (e /'K) ' "'
I tel n, =O

m~+n~+m, +n,
m[ G„,+,(P)

m2+n2
G.,+.,(P)

mL+ nL

mL , (P), (14)

where the (m/, n/), l = I, . . . , L, are the numbers of legs or lines attached on the lth SAW and belonging to the adjacent
random graphs on both sides. The random graph located between SAW lines l and l+1 contributes a n-point function
G„to Eq. (9) with n =n/+mt~ ~ (Fig. 3). This convolutive sum (14) is now easily performed by using the integral rep-
resentation (10)

KL 1 2b 1 1Z, (P,K) = IIp(4)A/J & 2a ~ 2a ( 1
—z(x)+z2) 1 —z(k2+Xi)

1

1
—z(EL+X)) ' (is)

where z —=e ~K. Each of the denominators is now represented by a Schwinger-type integral with a parameters, and the
integrals over the X's factorize immediately

L L

ZL(P, K) = ada/exp —g aL QP[z(a/+a/+~)],
L "o (-i I 1 ( 1

(i6)

where
t 2b

P(x) —= dh p(X)e"", (i 7)

F(p) = 1 —2o —Be
$2 d Ii(p)
2 du

(18)

and the convention aL ~ ~
= a~ is used. The form (11) of

p(X) allows an explicit calculation of the Laplace trans-
form (17):

P(x) =e" "F(xB),

where I~ is the modified Bessel function of order l.
We are interested in the singularities of ZL(P, K) (16)

when the polymer and surface fugacities K and e ~ ap-
proach their critical values K, and e ', respectively,

The polymer critical point K, for any fixed p corre-
sponds in integral (16) to all a/ parameters becoming
where the polymers and the surface become critical
(infinite).
large simultaneously. Indeed, the asymptotic behavior of
P(x) (18) reads explicitly

r i ]/2

lim P(x) =—1
Z~ oo 2 2'

e"&s+ r i (I —2o —Be /i)x i/2+ o + e ii x 5/2+0(x 7/2)—
46 8

(i9)

z, —=e t'K, (P) = —,
' (B+oct') (20)

Thus integral (16) diverges when the entropic exponen-
tial growth of (19) is balanced, i.e., for

t

(20), the singular behavior of ZL(P, K) (16) is obtained

by usual power counting on the a's in the integral repre-
sentation (16)

Note that z„i.e., K, depends on P only [see (12)] and
that K, (P) & K, (P, ) for P&P, . If we thus keep the
polymer fugacity IC below its lowest critical threshold
K, (P, ), and let P P,+, we recover the usual singularity
of the partition function (16) due to p(X) (11), i.e., that
of the infinite planar lattice alone. In this case the poly-
mers remain finite and do not change the critical behav-
ior of the random graph, as given in (8).

Now, let us consider the inverse case, e.g. , fix the
"cosmological constant" P & P, and let the polymer
fugacity K K, (P). The polymers now form a dense
critical phase filling the random lattice, whose area is
thus conjugate to K instead of p. The volume of the lat-
tice is essentially that of the polymers. When z z,

ZL(p, K) —(K, —K); K K, (p), p & p„ (2i)

where only the first term of the asymptotic expansion
(19) contributes to dominant order in this dense phase.

This does not hold true any more when its amplitude
vanishes: 1 —2o —Be ~ =0. This can be seen from (12)
to be exactly the condition dP/dB=O determining the
critical point of the random lattices in the absence of po-
lymers; hence e '=(12J3) '/. When P P,+, the
coefficient 1 —2o —Be ~ vanishes as (P —P, ) '/ . Near
that point we get a new critical behavior of ZL(P, K),
which is a consequence of the confluence of the singulari-
ties due to infinite polymers (K K, ) and infinite pla-
nar graphs (P P, ). Keeping both terms in (19) gives
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FIG. 3. Graphical representations of the convolutive sum
(14), each bubble standing for a n-point correlator 6„.

Z, - (K K)""-—(P P)""— (23)

Both polymers and nonfilled surface become infinite
simultaneously (dilute polymers), and their respective
mean sizes ( G )

—(P —P, ) ',
( I

~

—(K, —K) ', are
related by

p —p, —(K, —K)", vD=2, (24)

the singular behavior of the integral (16) for large a' s

Z, (P, K) [(K—, K)—'"(P P)—' '

+const(K, K) 'i ] —(22)

The double critical limit is obtained for p p, —(K,,
—K) where the two terms are equivalent; hence

For dense polymers [Eq. (21)], we find vD = I, y,t„.„s= —1, and AL =(L —2)/4, while for dilute polymers
[Eq. (23)], vD =2, y„„;„s=—

—,', and AL =(3L—2)/8, as
announced in (6), QED. Note that these exact results
lift the indeterminacy of KPZ formulas (2) and (3).
Note also that the result (21) for a dense ringlike poly-
mer (L=2) gives a new derivation of y,t„„s=—I for
c =d = —2, which was obtained in Ref. 4 from spanning
trees. This shows that on a random lattice dense poly-
mers and spanning trees are in the same universality
class' as noticed for the plane. "

This study can be generalized to the O(n) loop mod-
el' parametrized in Coulomb gas formalism by
n = —2coszg, where g E [0, 1] in the low-temperature
phase in the plane K&K, and g 6 [1,2] at K,
Then the dimensions AL( ) in the lane are "' for water-
melon correlation functions Ar. =gL /16 —(1 —g) /4g
and in the presence of gravity [Eqs. (2) and (3)]

——I, P&P„K K„gC[0,1],D L 1 1

2 g
(26)

AL =g———(g —1), p~ p„K K„g6 [1,2].L, 1

Note that g' in (2) and (3) reads g'=1/g in the dense
phase, g'=g at the conAuent dilute critical point, and in
both cases g'=1+1/m. The polymer values (6) are
recovered for the O(n =0) model, g =

2 for dense SAW,
g= 2 for dilute ones. Direct calculations of these O(n)
dimensions on the random lattice are in progress, ' as
well as for polymers of any topology. '

Z, -~K —K~""'" """"' (25)

where v is the polymer size exponent, and D is the frac-
tal dimension of the surface. From (22) we find vD =2.
Hence the mass of the polymer grows as a power of that
of the random lattice I (

—
) G )

' ' =
~
G

~

'i, and the
occupied fraction

~
I / ~

G
~

vanishes at the critical
point. This is the phase of dilute polymers. Note that
for dense polymers [Eq. (21)], the polymer and lattice
critical volumes are the same and vD =1. Note also that
(24) corresponds to the finite-size scaling regime near
the dilute critical point.

Let us now relate these sets of exact critical exponents
(21), (23), and (24) to the gravitational conformal di-

mensions AL (6). We have to normalize the partition
function ZL (13) by that of the random surface with two

rooted points, i.e., by Z" (p) (8), in order to interpre it

as a correlation function of conformal fields as in (4):
GL =Zl (p, K)/Z "(p). We expect it to scale like Gl
—(p —p, ) in the finite-size scaling regime where

P
—P, —(K, —K) ', with vD = (1 —4p) ', Ap being

here the energy anomalous dimension. From these
definitions, and using the string susceptibility (8), we

find
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