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Particlelike Solutions of the Einstein- Yang-Mills Equations
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We study the static spherically symmetric Einstein-Yang-Mills equations with SU(2) gauge group
and find numerical solutions which are nonsingular and asymptotically flat. These solutions have a
high-density interior region with sharp boundary, a near-field region where the metric is approximately
Reissner-N4rdstrom with Dirac monopole curvature source, and a far-field region where the metric is

approximately Schwarzschild.
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Introduction N.e—ither the vacuum Einstein equations
nor the pure Yang-Mills equations have nontrivial static
globally regular (i.e., nonsingular, asymptotically flat)
solutions. For pure Yang-Mills fields, this was shown by
Deser and Coleman, '2 and Deser has also shown that
there are no static Einstein- Yang-Mills (EYM) solutions
in D=2+1.3 The corresponding result for vacuum

gravity and for Einstein-Maxwell fields is Lichnerowicz's
theorem, with modifications permitting interior horizons
due to Israel, 4 Robinson, ' Bunting and Masood-ul-
Alam. b So it is natural to conjecture that the coupled
EYM equations also have no nontrivial globally regular
solutions.

In this paper we present strong (numerical) evidence
for the existence of a discrete family of globally regular
solutions of the static EYM equations —the gravitational
attraction can balance the Yang-Mills (YM) repulsive
force. The solutions we find have gauge group SU(2)
and are spherically symmetric. Their behavior shows

three distinct regions, with two transition zones. The in-

terior region, r & 1, is characterized by high YM curva-
ture and stress-energy. The transition zone about r =1 is

marked by large fluctuations in the connection and
metric coefficients. These fluctuations are rapidly
damped in the near-field region, 1 & r & Ro, where the
YM curvature decays polynomially and has dominant

behavior modeled closely on the Dirac magnetic mono-

pole and the metric is very close to the extremal
Reissner-Ndrdstrom solution. In the "charge-shield-
ing" transition zone, Ro & r & R ~, the Reissner-
Nprdstrom charge gradually decays to zero, and in the
far-field region, r & R ~, the solution approximates the
Schwarzschild solution, with zero YM charge integrals.

There are two important lessons to be drawn from
these results:

(1) The gravitational interaction cannot be dismissed
as too weak to be of consequence —the existence of these
solutions depends essentially on the interaction between
the YM and Einstein equations.

(2) Both nontrivial Yang-Mills vacua and "symmetry
breaking" can occur without involvement of the Higgs
mechanism. The equations contain no Higgs fields and
are topologically trivial, yet these solutions have nonzero
YM curvature, which progressively degenerates su(2)

u(1) 0 as r
EYM equations and boundary conditions. —The

spherically symmetry SU(2) connection has been de-
scribed in many places. ' If we let z;, i =1,2, 3, denote
the usual basis of su(2), 8 and p the usual polar coordi-
nates on S2, and parametrize the space of 5 orbits of
the symmetry group by (r, t ), the connection can be writ-
ten

3 =az3dr+ bz3 dr+ (cz~+ dz2)d8+ (cot8z3+ cz2 —d z~ )sin8dp,

where a, b, c, and d are functions of (r, t). This connec-
tion arises from the global symmetry group SU(2) rather
than SO(3). '

By changing coordinates, we can write the spherical
metric as

2 — T
—

2dt 2+R 2 dr 2+r 2(d82+sin28d~2) (2)

We consider only time-independent solutions in this pa-
per, and so the functions a, b, c, d, R, and T depend now

only on r.
The connection A has a residual U(1) gauge freedom,

h 'Ah+h 'dh where h(r) =exp(tirz3), which we
use to impose the radial gauge b:0. The YM curvatu—re

(r R 'Ta')' 2RT(c +d )a=—0,

(R 'T 'c')'+RTa2c+r 2RT '(1 —c d)c =0, —

cd' —dc' =0.

Using the remaining gauge freedom we can set d =0,
c=w E R with w~0 at r =0. The EYM equations
derived from the Lagrangean f ( —R+ I F I )v gdx,

=g'bg' F„Fba, are

Ricab =2F .Ff 2 I F I gab
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We now assume a =0, so that the YM curvature is purely magnetic and there are not dyons. ' In fact, one can show
that this assumption follows from suitable asymptotics and finite energy. If we introduce m(r) by R = (1 —2m/r)
the static spherically symmetric EYM equations reduce to

m
' = (1 —2m/r )w

' + —,
' (1 —w ) /r,

r (1 —2m/r)w '+[2m —(1 —w ) /r]w'+(1 —w )w =0,

with the supplementary equation

2r(1 —2m/r)T'/T=(1 —w ) /r —2(1 —2m/r)w' —2m/r,

and YM curvature tensor

F =w'r~ dr Ad8+ w'r2dr Asin8dg —(1 —w ) r3d8Asin8dg. (6)

and note that the local energy density is

4&Too= I~r I
+ 2 I&L I (7)

We impose the asymptotic conditions m(r) ~ M & ~
as r ~, so that R(r) 1, and T(r) 1. There are
two explicit solutions satisfying these conditions. If
w= 1, then

m(r) =M, constant, and R =T=(1 2m/r)—

which is just the Schwarzschild metric, with vanishing
YM curvature. If w=0, then a(r) a=an e/r, ao, —e
constant, and

2m(r) =2M —(1+e )/r, R =T=(1—2m/r)

This describes the Reissner-Ngrdstron (RN) metric with
mass M, electric charge e, magnetic charge g =1, and
YM curvature

F= (e/r ) r3dr Adt —r3d8Asin8dp

Since F is u(1) valued, with e =0, this represents a Dirac
monopole source for the RN metric, a solution also noted

by Harnad, Shnider, and Tafel. '5

Of course, the RN and Schwarzschild solutions both
have singularities. We now consider the boundary condi-
tions at r =0 needed for nonsingular solutions. The re-
quirement that the density Too be finite implies

2m(r) =O(r ),

w(r) =1+0(r ), w'(r) =O(r) as r~ 0.

Together with T'(0) =0, this ensures that the metric is
regular at r =0, and a result of Uhlenbeck now shows
that the bundle extends smoothly across r =0.

There are some elementary observations about these
equations. We have

(lnR/T)' =2w' /r,

We introduce the radial and angular magnetic curva-
tures,

(1 —w') w'

r2 ' rR

and so R/T is increasing and T&R) 1. Since T
satisfies

=2(1 2m/r—)w' /RT+(R/r T)(w —1)w

we see that T' & 0 if w ~1. If we write the equation
for w in the form

—,
' [(w')'/RT]'

=w'2/RT+ (R/r T)(w —1)w

either w & 1 or w ~1 if the total mass is finite. Also,
ww" & 0 if w' =0 and w & 1, which is consistent with w

oscillating.
Numerical solutions Our .—method of finding non-

trivial solutions of (3)-(9) is quite simple minded. Us-
ing the formal power-series expansion about r =0,

2m=4b r + —", b r +O(r ),

w =i+br +(—'b + —,', b )r +O(r ) b g R,

we construct initial data at r =0.01 for a standard-
package ordinary-differential-equation solver. By adjust-
ing the free parameter b, we "shoot" global solutions.
With tolerance 10 ', the solutions were found to vary
continuously and regularly with b, indicating that this
numerical procedure is well behaved.

For b & —0.0706, the solver broke down at r & 1 with
w' large and negative. For —0.706 & b & 0, the generic
solution oscillated in Iw I

& 1 before crossing Iw I
=1

and rapidly going to infinity. However, at a discrete set
of values in this range, the solutions after oscillating are
seen to be asymptotic to w = + 1 (Fig. 1). We can index
these solutions by k =number of zeroes of w. There are
three distinguished regions: the inner core region I,
r & 1; the near-field region II, r & 1, w-0; and the far-
field region III, r»1, w —~ 1.

The stress-energy density (7) is large in the inner core
but decays rapidly (Fig. 2). In region II, BL»BT, indi-
cating that the solution approximates the U(1) Dirac
monopole.
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FIG. 1. Connection parameter wj„k =1,3,5. FIG. 2. Energy density in the interior, k 3.

The mass function m(r) increases to a limit Mk & 0,
where the total mass Mq was found empirically to satisfy
Mi, =1 —1.055e ' . The metric coefficient R =(1
—2m/r) 'i2 has a large peak at r- 1, the size of the
peak depending on k. As suggested above, in the near-
field region II, R approximates the RN coefficient with
e =0 and magnetic charge g =1. This can be clearly
seen by definition of the RN (magnetic) charge,

g'(r) =2r(Mk —m).

Notice (Fig. 3) that the charge is shielded in the transi-
tion between regions II and III, and in the far-field re-
gion III the metric is approximately Schwarzchild with
mass Mi, . EYM-Higgs perturbations of the extremal
RN metric about the internal infinity have been studied
by Hajicek' and may apply to model the behavior near
r =1.

In the far-field region we have the asymptotic expan-
sion, for some c & 0

w —1 c/r, m -M—c /r, —

IBTI -2c/»', IBL I
-c/»'

Thus the YM curvature decays polynomially and the to-
tal YM charge integrals vanish.

Discussion Altho. —ugh the model has an unspecified
length scale (we have c =G = I), the ratio mass radius of
these solutions is fixed =1 (by radius we mean the ra-
dius of the inner-core region). Assignment of the parti-
cle radius 1 Planck length (1.6X10 i cm) leads to a
mass of 1 Planck mass (2.2X10 g). Changing of the
coupling constant does not affect this ratio: The
Lagrangean f( —R+X IF I )Jg has the well-known
scaled solutions

There are strong similarities with magnetic monopole
models, ' but there are also some significant differences.
In the near-field region, the dominant contribution BL to
the YM curvature closely approximates the U(1) Dirac
monopole, but the transverse component BT, although
small, appears to decay polynomially and not exponen-
tially. In the far-field region the curvature decay is still

polynomial but O(r ) rather than the U(l) monopole
O(r ), and so the YM charges vanish trivially.

If we take stability to mean that the Hessian of the en-

ergy functional,

1(w)=„(IBLI +2IBTI')y dy, (1Q)

is positive definite, then simple heuristics based on the
observed numerical behavior (Fig. 1) indicate that at
best only the k =1 and k =2 solutions can be stable. If
we assume w-0 on the interval [1;8], the Hessian can
be approximated by

a'l(w)(y, y) =& y' —,y' drJp 2

for p E Co ([1;8]). We readily see that 8 I has negative
eigenvalues by testing with the continuous, piecewise
linear function &=1 for 2 &r &4, =0 for r & l, r &8,
and linear elsewhere. This indicates that the solutions
with k ~ 3 are unstable, as the near-field region where
w-0 then includes [1;8].

NASS

mq(r) =km(r/A. ), wq(r) =w(r/X), Tq(r) =T(r/A, ),

where m, w, and T are static spherical solutions for the
original Lagrangean. This rescaling does, of course,
affect the YM curvature —the rescaled magnetic field
satisfies

10-1 1 io X io' io'

RADIUS

10 10

B,(r) =~ 'B(r/~). FIG. 3. Mass, RN charge, and w for k =3.
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By analogy with the superposition solutions for ex-
tremal RN solutions, we may expect superposition solu-
tions for the static EYM equations as well. Finally, we

mention the review article of Malec, ' which presents
some "no go" results for the static EYM equations.
These results do not, of course, cover our solution, but do
show that it is a strictly nonperturbative effect.

We would like to thank our colleagues in the Centre
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ments, especially Nalini Joshi and Lars Wahlbin.
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