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Nuclear Spin-Lattice Relaxation: A Microscopic Local Probe
for Systems Exhibiting the Quantum Hall Eff'ect
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A theory of magnetic quantum oscillations in the nuclear spin-lattice relaxation rate, Tl, in quasi-
two-dimensional conductors at low temperatures and under strong magnetic fields is presented. We
show a close similarity between the magnetic field dependence of TI and that of p„ in the quantum
Hall eAect. The shape and the amplitude of the oscillations in TI depend strongly on band anisotropy,
electron mean free path, spin Larmor frequency, and temperature, and may provide rich information on

the sample parameters.
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Magnetic quantum oscillations, originating from the
discrete part of the electron energy spectrum in the mag-
netic field (Landau levels) are common to many trans-

port properties in a three-dimensional electron gas. The
most widely studied are the oscillations of the magne-
toresistivity p„„(Shubnikov-de Haas effect) and the os-
cillations of the magnetization (de Haas-van Alphen
effect. ' The remarkable features in two-dimensional
conductors are the special size and the form of these os-
cillations: The Shubnikov-de Haas effect turns into the
celebrated quantum-Hall-effect structures; the mag-
netization oscillations have a saw-tooth form in the
high-field region ' ' and may drive a diamagnetic
phase transition into a nondissipative state (ideally con-
ducting phases ) in a dense two-dimensional electron
gas. "

Apart from the drastic change of the form of the rnag-
netic quantum oscillations in a 2D electron gas, one ex-
pects their appearance also in physical properties, which

usually do not show any appreciable quantum oscilla-
tions in isotropic 3D systems. Indeed, we have shown

previously' that the nuclear spin-lattice relaxation rate
T i should exhibit strong magnetic oscillations in a
quasi-two-dimensional metal. In isotropic metals, Ti
is due to the hyperfine interaction between the nuclear
spin and the conduction-electron spin. It is known to
obey the Korringa law, " that is, Ti '~N (eF)kaT,
where N(eF) is the single electron density of states at the
Fermi energy and T is the temperature. Deviations from
the Korringa law are rare and may originate from strong

electron correlations (e.g. , superconducting correlations
yield a logarithmic divergence of Tt at T„ the transi-
tion temperature' ' ). To a high degree of accuracy,
Ti ' is, usually, field independent. ' Ehrenfreund, Ron,
and Weger' have observed, however, a strong magnetic
field dependence of T~

' in Hg3 — AsF6, which was attri-
buted by them to the quasi-two-dimensional character of
the electron motion in this material.

Our purpose in the present paper is to study the mag-
netic field dependence of T& in quasi-two-dimensional
conductors at sufficiently low temperatures and high
magnetic fields where the Landau levels are well separat-
ed. We find a remarkable similarity between the mag-
netic field dependence of T i

' and that of p„„ in the
quantum Hall effect, namely, exponentially vanishing
T~

' when the chemical potential is in the mobility gap
and maxima when a Landau level crosses the Fermi en-

ergy. The width of the maximum in T~ is determined
either by the band width in the k, direction, A„or by the
Zeeman splitting energy hco, rather than by the temper-
ature and scattering smearing of the Landau levels' '
as for p„„ in quantum Hall effect. This is due to the con-
servation laws governing the spin-flip process associated
with the hyperfine interaction between the nuclear and
conduction-electron spins.

The nuclear spin-lattice relaxation rate Ti ', caused
by the hyperfine interaction between the nuclear spins
and the conduction-electron spins, is related to the imag-
inary part of the local spin-spin correlation function
through the equation

32m '""'I(S+(R, I )S (R,O) lj dt,

where 5 (R), S (R) are the transverse components of the electron-spin-density operator at the nuclear position R.
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The time dependence is given in the Heisenberg representation with respect to the free-electron Hamiltonian in the
presence of the static magnetic field. Here co„ is the nuclear resonance frequency, y„ is the nuclear gyromagnetic ratio,
and pq is the Bohr magneton.

We consider an anisotropic electron gas having two equivalent easy axes (the x and y directions) and a perpendicular
hard axis (in z direction). A static magnetic field H is applied along the z axis so that the single electron energies are
given by

e(n, k, ) =ha, (n+ —,
' ) + —,

' h, [1 —cos(k, )d]+ 2 hco, a, (2)

where co, is the cyclotron frequency, n =0, 1, 2, . . . , d is
the lattice constant in the z direction, co, is the electron-
spin Larmor frequency, and cr=+ 1. For a highly an-
isotropic motion, the maximal value of the longitudinal
kinetic energy, 6„ is much smaller than the Fermi ener-

gy EF
For the sake of simplicity we shall use the parabolic

band approximation in Eq. (2) so that the longitudinal
kinetic-energy term there is of the form e, =h k, /2m, *
with the longitudinal effective mass m,* defined by
m* =2h'/g d2

Using the standard procedure outlined in Ref. 12, but
now with the modification introduced by the presence of
scattering mechanisms such as, for example, impurity
scattering, we get

-k, v
f'

e he, (n+ I/2),

r/h
1+ [e, —e,'+ hco, (n n')——hco, ]'r'/h' (3)

In this equation A=(16m /9)(gy„pa) h, aH=(ch/
eH) '~ is the magnetic length, f (e) is the Fermi-Dirac
distribution function in the absence of the scattering
effect, T is the temperature, and r is a phenomenological
single electron relaxation time. In this formula the eff'ect

of scattering appears only in a Lorentzian smearing of
the delta function characterizing the ideal energy-
conserving situation considered in Ref. 12. The effect of
scattering on the electron distribution function ' is

neglected. This is a reasonable assumption if the inverse
relaxation time h/r is smaller than kaT. A similar for-
mula can be obtained by use of a fully microscopic ap-
proach.

The magnetic field dependence of T~ ', based on the
Eq. (3) for the case where 5, ) hro„ is presented in Fig.
1(a). The physics behind this figure can be understood
from a schematic construction exhibited in Figs. 1(b)
and 1(c): For a sufficiently high magnetic field, where

hei, ))h„ the spin-flip process takes place within a sin-

gle Landau level [Fig. 1(c)]. This corresponds to
neglecting all the terms in Eq. (3) for which n'Wn. Un-
der this condition the Lorentzian in Eq. (3) contributes
significantly only within a strip of width I =h/r along
the segment e, =e„hco, & e, & 6, in the (e„e,) plane
[Fig. 1(b)]. The Pauli exclusion principle further re-
stricts the possible spin-flip processes within a strip of
width kaT around e, =e —hco, (np+ —,

' ), where np is the
number of fully occupied Landau levels [see Figs. 1(c)
and 1(b)]. Thus the region in the (e„e) plane represent-
ing significant contributions to these processes is the
parallelogram formed by the intersection of the above
two strips [Fig. 1(c)]. "Vertical" processes within this
region are exclusively due to the presence of the external

energy reservoir (i.e., phonons, plasmons, etc.). "Hor-
izontal" processes are associated with energy transfer be-
tween the electron-spin degrees of freedom and the orbit-
al electron motion along the z direction. Now, if both
the temperature and the Landau-level broadening are
sufficiently small such that kBT, h/r & A„while the Fer-
mi energy is assumed to be fixed, the variation of the
magnetic field is reflected in Fig. 1(c) by a horizontal
motion of the small parallelogram between hco, and d, .
Therefore the magnetic field dependence of the relaxa-
tion rate, shown in Fig. 1(a), reflects the one-
dimensional density of states at the Fermi energy associ-
ated with the electron motion in the z direction. This is,
of course, restricted to a 6,/hco, portion of the de
Haas-van Alphen (dHvA) period, outside which T~ is
exponentially small,

exp [ —h ~,/k BZ'}.

The situation changes dramatically once the electron
Zeeman splitting, Ace„becomes larger than h, Under
this circumstance, and in the absence of any scattering
process, the energy conservation requirement reduces the
spin-lattice relaxation rate to zero. In the presence of
scattering the contribution to the relaxation process is
associated with the tail of the Lorentzian in Eq. (3) and
therefore depends strongly on r. Our numerical result
for such a situation is shown in Fig. 2.

In the case where the chemical potential, p, is pinned
to a partially occupied Landau level (No=const) the ex-
pression for T~ ', Eq. (3), should be supplemented by
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FIG. 2. Magnetic field dependence of the nuclear spin-
lattice relaxation rate Tl in a two-dimensional (hro, & hro,
»6, ) conductor within a ro, /co, portion of a single period.
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FIG. l. A schematic construction explaining the physics
behind the magnetic field dependence of the nuclear spin-
lattice relaxation rate TI in a quasi-two-dimensional conduc-
tor: (hco, & 6, & hru, ) within a 6,/hco, portion of a single
dHvA period. In the rest of the period TI is exponentially
small, expf —hru, /kaT}l Low temperatu. res (kaT & hro„h, )
and narrow Landau levels (I & hro„h, ) are assumed. (a) The
magnetic field dependence of the relaxation rate TI ' refIects
the one-dimensional density of states, at the Fermi level, asso-
ciated with the electron motion in the z direction. HereI= l —B /B, and Bo is the field, corresponding to the intersec-
tion of the spin-up Zeeman level with the Fermi level. (b) The
Lorentzian in Eq. (3) contributes mainly along a strip of width
l in the (e,', e)) plane. (c) Electron spin-flip processes in the
Zeeman split Landau level are illustrated in the (e, e, ) plane.

the explicit dependence of p upon 8. This dependence
can be calculated along the lines, presented in Ref. 9,
where an analytic expression for the chemical potential
in a 2D electron gas at finite temperatures is given [see
Eq. (5) in Ref. 9]. Figure 3 exhibits p(8) and Ti (8)

in the case when the chemical potential is confined
within the Zeeman split Landau level for the entire
dHvA period.

To summarize, we find a remarkable similarity be-
tween the magnetic field dependence of the nuclear
spin-lattice relaxation rate Ti (8) and p„„(8) in a
two-dimensional electron gas at low temperatures and
under strong magnetic fields, namely, exponentially
small values of Tj when the chemical potential is

trapped between the Landau levels by localized states, as
in conventional quantum Hall eff'ect, or by the
diamagnetic-phase-transition-driven nondissipative
state.

Since the shape and the amplitude of the quantum os-
cillations in Ti depend strongly on band anisotropy,
electron mean free path, spin Larmor frequency, and the
temperature, we conclude that the study of the magnetic
field dependence of Ti ' may provide rich microscopic
information on the density of states in quasi-two-
dimensional electronic systems, like quasi-2D synthetic
metals, e.g. , graphite intercalation compounds, ' and
layered transition-metal dichalcogenides, e.g. , TaS2 and
NbSe2.

Because the number of nuclei in the thin region, which
gives rise to the quantum Hall effect, is small, measure-
ment of the nuclear spin-lattice relaxation in a hetero-
junction presents a challenging experimental task. One
may think about superlattices or multiple quantum wells
with quite a number of layers to get enough nuclei, in-

teracting with the electrons. The alternative possibility
is to use nonconventional methods, like the observation
of the electron-spin resonance and of the Overhauser
shift in a heterojunction via measurements of the diag-
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FIG. 3. Magnetic field dependence of the chemical potential, tt(8), and of T~ '(8) when tt(8) is pinned to a Landau level. In
this case the relaxation rate T~ ' is finite over the entire dHvA period. Here hey, /hco, =10, 5,/I 0 15, and hto, /I 0 7.8. On the
horizontal axes nF is the number of the Landau levels under the Fermi energy, N is the areal electron density, and g stands for the
degeneracy of a Landau level.

onal resistivity p „under the electron-spin resonance
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